

UNIVERSITÀ DEGLI STUDI DI PALERMO

DIPARTIMENTO	Matematica e Informatica
ANNO ACCADEMICO OFFERTA	2024/2025
ANNO ACCADEMICO EROGAZIONE	2025/2026
CORSO DILAUREA MAGISTRALE	MATEMATICA
INSEGNAMENTO	METODI E MODELLI MATEM.PER LE APPLIC.
TIPO DI ATTIVITA'	С
AMBITO	20947-Attività formative affini o integrative
CODICE INSEGNAMENTO	05044
SETTORI SCIENTIFICO-DISCIPLINARI	MAT/07
DOCENTE RESPONSABILE	SCIACCA VINCENZO Professore Ordinario Univ. di PALERMO
ALTRI DOCENTI	
CFU	6
NUMERO DI ORE RISERVATE ALLO STUDIO PERSONALE	102
NUMERO DI ORE RISERVATE ALLA DIDATTICA ASSISTITA	48
PROPEDEUTICITA'	
MUTUAZIONI	
ANNO DI CORSO	2
PERIODO DELLE LEZIONI	2° semestre
MODALITA' DI FREQUENZA	Facoltativa
TIPO DI VALUTAZIONE	Voto in trentesimi
ORARIO DI RICEVIMENTO DEGLI	SCIACCA VINCENZO
STUDENTI	Giovedì 15:00 18:00 Dipartimento di Matematica e Informatica, via Archirafi 34, Ufficio n° 216 (2° piano)

PREREQUISITI

Funzioni reali di una e due variabili reali. Funzioni elementari. Limiti, continuità e differenziabilità. Serie di funzioni. Spazi vettoriali. Algebra lineare.

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacita' di comprensione:

Deduzione, su esempi di mezzi continui in condizioni e regimi specifici, di alcuni modelli rilevanti della fisica matematica. Conoscenza delle soluzioni, analitiche e numeriche, di modelli significativi in ambito bio-matematico e fisico-matematico. Conoscenza di software per la risoluzione numerica di modelli evolutivi. Capacita' di leggere e comprendere testi avanzati di Matematica e di consultare articoli di ricerca inquadrandoli nell'ambito della ricerca attuale. Capacita' di applicare conoscenza e comprensione:

Capacita' di applicare le principali tecniche di analisi qualitativa a equazioni alle derivate parziali aventi struttura analoga a quelle presentate nel corso. Capacita' di formalizzare matematicamente problemi e elaborare dimostrazioni utilizzando tecniche tratte dalla letteratura matematica consolidata. Capacita' di simulare numericamente alcuni dei sistemi introdotti nel corso. Capacita' di produrre elaborati personali originali nell'ambito della ricerca matematica e delle sue applicazioni.

Autonomia di giudizio:

La piena comprensione dei concetti fondamentali e delle principali tecniche introdotte nel corso portera' lo studente ad avere la capacita' sia di formulare congetture sui possibili comportamenti delle soluzioni di alcune importanti equazioni della Fisica-Matematica, sia di visualizzare alcuni possibili percorsi per la dimostrazione rigorosa di tali congetture. Disporra' inoltre di strumenti e metodologie che gli consentiranno di individuare soluzioni anche in presenza di contesti ampi e multidisciplinari. Acquisira' infine la capacita' di analizzare criticamente testi di tipo scientifico e di modellizzare e formalizzare in piena autonomia problemi per lui nuovi. Il conseguimento degli obiettivi formativi verra' raggiunto sia mediante le lezioni frontali, sia mediante la preparazione di seminari su argomenti complementari a quelli trattati nel corso. Il raggiungimento degli obiettivi e' verificato mediante gli esami orali e la tesina. Abilita' comunicative:

Lo studente dovra' acquisire la capacita' di esporre come possa costruirsi un modello di rappresentazione di processi reali con l'uso di principi generali della fisica e di strumenti adeguati della matematica. Lo studente dovra' acquisire la capacita' di esporre in modo chiaro e rigoroso, utilizzando adeguatamente il lessico disciplinare, i risultati dell'analisi del problema e delle soluzioni sia qualitative che numeriche, individuate.

Capacita' d'apprendimento:

Lo studente acquisira' la capacita' di contestualizzare le proprie conoscenze in ambiti ampi e multidisciplinari adeguando eventualmente in maniera autonoma le proprie conoscenze. Scopo ideale del corso e' anche quello di consentire allo studente di accedere a una porzione significativa della letteratura specialistica sulla modellistica matematica e di contribuire a sviluppare una mentalita' flessibile, cosicche' lo studente possa agevolmente inserirsi in percorsi di avviamento alla ricerca.

VALUTAZIONE DELL'APPRENDIMENTO

La verifica delle capacita' man mano acquisite viene fatta mediante un'attiva partecipazione dello studente alla risoluzione di problemi e questioni durante le ore di lezione e anche attraverso l'elaborazione di progetti realizzati sia individualmente che in gruppo. La verifica finale mira a valutare se lo studente ha conoscenza e comprensione degli argomenti, se ha acquisito la capacita' di applicare tale conoscenza, se ha sviluppato competenza interpretativa e autonomia di giudizio di casi concreti, e valuta infine le abilita' comunicative e la proprieta' di linguaggio relativamente agli argomenti trattati. La verifica finale consistera' di una tesina nella quale gli studenti dovranno studiare e riprodurre i risultati di un articolo scientifico di argomento attinente alle tematiche trattate nel corso e di una prova orale. La valutazione della tesina sara' espressa in trentesimi. Durante la prova orale lo studente dovra' rispondere correttamente ad un minimo di due/tre domande, poste oralmente, su tutte le parti oggetto del programma e dovra' discutere in maniera critica lo svolgimento della tesina. La valutazione della prova orale sara' espressa in trentesimi. La valutazione finale verra' espressa in trentesimi e verra' calcolata come media aritmetica dei voti della tesina e della prova orale. Il voto verra' formulato sulla base delle seguenti

- a) non possiede una conoscenza accettabile dei contenuti degli argomenti trattati nell'insegnamento (insufficiente);
- b) minima conoscenza di base degli argomenti principali dell'insegnamento e del linguaggio tecnico, minima capacita' di applicare autonomamente le conoscenze acquisite (18-20);
- c) non ha piena padronanza degli argomenti principali dell'insegnamento ma ne possiede le conoscenze, soddisfacente proprieta' di linguaggio, accettabile capacita' di applicare autonomamente le conoscenze acquisite (21-23); d) conoscenza di base dei principali argomenti, discreta proprieta' di linguaggio, con limitata capacita' di applicare autonomamente le conoscenze alla soluzione dei problemi proposti (24-25);

	e) buona padronanza degli argomenti, piena proprieta' di linguaggio, lo studente e' in grado di applicare le conoscenze per risolvere i problemi proposti (26-29); f) ottima conoscenza degli argomenti, ottima proprieta' di linguaggio, buona capacita' analitica, lo studente e' in grado di applicare le conoscenze per risolvere i problemi proposti (30-30 e lode). Per gli studenti con disabilità e neurodiversità saranno garantiti gli strumenti compensativi e le misure dispensative individuate, dal CeNDis - Centro di Ateneo per la disabilità e la neurodiversità, in base alle specifiche esigenze e in attuazione della normativa vigente.
OBIETTIVI FORMATIVI	Gli obiettivi formativi del corso sono la comprensione e la conoscenza dei seguenti argomenti: 1) Ricavare equazioni differenziali alle derivate parziali, a partire da leggi di bilancio descriventi processi fisici ideali, quali: l'equazione del calore, l'equazione del trasporto, i modelli di traffico, l'equazione di Burgers, le equazioni di reazione-diffusione, l'equazione di Fischer. 2) Dare alcuni cenni sulla teoria classica delle equazioni differenziali alle derivate parziali per dimostrare l'esistenza e la regolarita' delle loro soluzioni. 3) Implementazioni di metodi alle differenze finite e spettrali per la loro risoluzione numerica.
ORGANIZZAZIONE DELLA DIDATTICA	L'attivita' didattica prevede lezioni frontali ed esercitazioni in laboratorio. Durante le lezioni frontali gli argomenti del corso verranno presentati ed analizzati. Le esercitazioni di laboratorio saranno volte a far acquisire maggiore comprensione e padronanza degli argomenti trattati ed a implementare numericamente i modelli studiati.
TESTI CONSIGLIATI	Libri di testo (Textbooks): Holmes, Introduction to the Foundations of Applied Mathematics, Springer (II ed.ISBN-10: 3030242609); Quarteroni, Modellistica Numerica per Problemi Differenziali, Springer (VI ed.ISBN-10: 8847057809) Libri di consultazione (Reference books): Haberman, Mathematical Models: Mechanical Vibrations, Population Dynamics, and Traffic Flow (Classics in Applied Mathematics), SIAM, (I ed. ISBN-10: 0898714087) Salsa, Equazioni a derivate parziali, Springer (III ed. ISBN-10: 0821849743) Evans, Partial differential equations, AMS Pub. (II ed. ISBN-10: 0821849743) Hestaven, S. Gottlieb, D. Gottlieb, Spectral Methods for Time Dependent Problems, Cambridge Monographs on Applied and Computational Mathematics 2007 ISBN-10: 0521792118 Morton & Meyers, Numerical solution of Partial differential equations Cambridge University Press, 1994 ISBN-10: 0521429226 Tveito & Whinther, Introduction to Partial differential equations: A computational approach, Springer (II ed. ISBN-10: 3540887040) Trefethen, Spectral Methods in Matlab, Cambridge University Press 2001 ISBN-10: 0898714656

PROGRAMMA

ORE	Lezioni
10	Derivazione di equazioni differenziali alle derivate parziali di tipo parabolico, iperbolico e di reazione-diffusione, a partire da leggi di bilancio descriventi processi fisici ideali. Metodi analitici per lo studio dell'esistenza e della regolarita' delle loro soluzioni.
10	Metodi numerici alle differenze finite per la risoluzione di equazioni differenziali alle derivate parziali di tipo parabolico, iperbolico ed equazioni di reazione-diffusione.
10	Serie di Fourier e trasformata di Fourier discreta. Metodi spettrali e pseudo-spettrali di Fourier e di Chebyshev per la risoluzione numerica di equazioni alle derivate parziali di tipo parabolico, iperbolico ed equazioni di reazione-diffusione.
9	Uso del software MATLAB per l'implementazione di algoritmi alle differenze finite per la simulazione di problemi evolutivi di tipo iperbolico, parabolico e di tipo reazione diffusione.
9	Uso del software MATLAB per l'implementazione di algoritmi con metodi spettrali per la simulazione di problemi evolutivi di tipo iperbolico, parabolico e di tipo reazione diffusione.