

UNIVERSITÀ DEGLI STUDI DI PALERMO

DIPARTIMENTO	Ingegneria
ANNO ACCADEMICO OFFERTA	2020/2021
ANNO ACCADEMICO EROGAZIONE	2020/2021
CORSO DILAUREA MAGISTRALE	INGEGNERIA BIOMEDICA
INSEGNAMENTO	TISSUE ENGINEERING
TIPO DI ATTIVITA'	В
АМВІТО	50351-Ingegneria Biomedica
CODICE INSEGNAMENTO	18415
SETTORI SCIENTIFICO-DISCIPLINARI	ING-IND/34
DOCENTE RESPONSABILE	LA CARRUBBA Professore Associato Univ. di PALERMO VINCENZO
ALTRI DOCENTI	
CFU	9
NUMERO DI ORE RISERVATE ALLO STUDIO PERSONALE	144
NUMERO DI ORE RISERVATE ALLA DIDATTICA ASSISTITA	81
PROPEDEUTICITA'	
MUTUAZIONI	
ANNO DI CORSO	1
PERIODO DELLE LEZIONI	2° semestre
MODALITA' DI FREQUENZA	Facoltativa
TIPO DI VALUTAZIONE	Voto in trentesimi
ORARIO DI RICEVIMENTO DEGLI STUDENTI	LA CARRUBBA VINCENZO
	Martedì 11:00 12:00 Studio docente, edificio 6 secondo piano
	Giovedì 11:00 12:00 Studio docente, edificio 6 secondo piano

DOCENTE: Prof. VINCENZO LA CARRUBBA PREREQUISITI Conoscenze di scienza delle costruzioni: - sforzo/deformazione, tipi di sollecitazione (tensione, compressione, taglio), proprieta meccaniche Conoscenze di chimica applicata - classi di materiali, loro caratteristiche e proprieta Conoscenze di termodinamica - diagrammi di stato Conoscenze di principi di ingegneria chimica - trasporto di materia, bilanci di materia RISULTATI DI APPRENDIMENTO ATTESI Conoscenza e capacita' di comprensione Introduzione ai conceti di ingegneria tissutale e medicina rigenerativa. Definizione dei conceti chiave di biologia cellulare, bioingegneria, istologia e anatomia utili per comprendere i paradigmi dell'ingegneria tissuitale e della medicina rigenerativa. Definizione delle proprieta' e delle caratteristiche dei materiali e dei processi usati in ingegneria tissutale. Definizione delle proprieta' e della caratteristiche dei meccanismi di rilascio con riferimento alla fisiologia. Capacita' di applicare conoscenza e comprensione scelta dei processi piu' appropriati e dei materiali per una data applicazione di ingegneria tissutale. Descrizione dei processi di rilascio che hanno luogo nella fisiologia umana usando i tipici strumenti dell'ingegneria chimica. Autonomia di giudizio Identificazione dei processi piu' importanti e dei materiali per applicazioni di ingegneria tissutale, mettendo in evidenza differenze, analogie, vantaggi e svantaggi in maniera comparativa. Identificazione dei processi di rilascio nella fisiologia umana e loro descrizione qualitativa e quantitativa. Abilita' comunicative Gli studenti saranno in grado di comunicare con competence e proprieta' di linguaggio le conoscenze acquisite sui processi relativi alle applicazioni dell'ingegneria tissutale e biochimica, tra cui le proprieta' meccaniche, la biodegradazione, le proprieta' di superficie, i requisiti di porosita, la descrizione della fisiologia (modelli) Capacita' d'apprendimento Gli studenti saranno in grado di affrontare con autonomia un problema di rilascio e di ingegneria tissutale, individuando le strategie piu' idonee per la sua risoluzione VALUTAZIONE DELL'APPRENDIMENTO La prova finale di esame consiste nella valutazione complessiva di diversi assignment (dati a gruppi di 3-5 studenti): i) un report scritto (max 15-20 pagine) su attivita' di laboratorio cui gli studenti hanno assitito (i cui argomenti sono riportati in fondo alla scheda) ii) un assignment scritto (max 25-30 pagine) relativo ad un probléma di progettazione di uno scaffold per l'ingegneria tissutale, seguito da una presentazione orale da parte degli studenti iii) un esercizio scritto sul compartmental modelling (vedasi la scheda degli argomenti alla fine di questo modulo) La valutazione finale dell'insieme delle prove di cui sopra, opportunamente graduata, sara' formulata sulla base delle seguenti condizioni: a) Conoscenza sufficiente degli argomenti e delle teorie affrontati nell'insegnamento; sufficiente grado di consapevolezza e di autonomia nell'applicazione delle teorie per la risoluzione di problemi (voto 18-21); b) Conoscenza discreta degli argomenti e delle teorie affrontati nell'insegnamento; discreto grado di consapevolezza e di autonomia nell'applicazione delle teorie per la risoluzione di problemi (voto 22-25); c) Buona conoscenza degli argomenti e delle teorie affrontati nell'insegnamento; buon grado di consapevolezza e di autonomia nell'applicazione delle teorie per la risoluzione di problemi (voto 26-28); d) Ottima conoscenza degli argomenti e delle teorie affrontati nell'insegnamento; eccellente grado di consapevolezza e di autonomia nell'applicazione delle teorie per la risoluzione di problemi (voto 29-30L). La valutazione di cui sopra (a, b, c, d) sará' effettuata per i tre assignments i), ii) e iii) e verra' effettuata una media aritmetica delle tre valutazioni, con un arrotondamento per eccesso. **OBIETTIVI FORMATIVI** 1. Introdurre i fondamenti dei sistemi protesici e della medicina rigenerativa 2.

- Introdurre i fondamenti dei sistemi protesici e della medicina rigenerativa 2.
 Definire le principali proprieta' strutturali e funzionali dei materiali usati in medicina rigenerativa e nell'ingegneria tissutale
- 3. Passare in rassegna i principali processi di produzione di scaffold per l'ingegneria tissutale e per i dispositivi della medicina rigenerativa
- 4. Scegliere il processo di produzione piu' adeguato rispetto al target
- 5. Definire i processi di rilascio che hanno luogo nella fisiologia umana e usare gli strumenti ingegneristici piu' appropriati per descriverli, quantificarli e modellarli

ORGANIZZAZIONE DELLA DIDATTICA	Lezioni, esercitazioni, laboratorio
TESTI CONSIGLIATI	Reviews, book chapters, scientifc articles and slides supplied in electronic format

PROGRAMMA

ORE	Lezioni
3	Breve carrellata storica sui dispositivi protesici, sull'ingegneria tissutale e le medicina rigenerativa.
4	Richiami di biologia cellulare e alle colture cellulari: mezzi di coltura, crescita e differenziamento, formazione dei tessuti. Tipi di tessuti. Interazione cellule-biomateriale. Risposta infiammatoria ed immunitaria.
5	Paradigmi dell'ingegneria tissutale e della medicina rigenerativa: obiettivi e metodi
6	Scaffold per l'ingegneria tissutale. Strategie per la progettazione e la realizzazione.
5	Richiami di istologia e all'anatomia: pelle, cartilagine, osso (assa lunghe), sistem cardiovascolare (vasi sanguigni), sistema respiratorio (bronchi)
5	Materiali usati nell'ingegneria tissutale: polimeri naturali e sintetici
5	Metodologie impiegate nell'ingegneria tissutale (produzione degli scaffold)
6	Metodi per la produzione di scaffold basati sulla separazione di fase: implicazioni cinetiche e termodinamiche
3	Aspetti relativi alla biodegradazione nell'ingegneria tissutale: degradazione idrolitica ed enzimatica. Materiali biomimetici
14	Introduzione all'ingegneria biochimica. Fisiologia. Farmaci, principi attivi ed eccipienti. Operazioni unitarie. Fenomeni di trasporto nella fisiologia umana e modelli (compartmental medelling)
ORE	Esercitazioni
6	Esempi di tissue engineering in-vitro: pelle, vasi sanguigni, bronchi, ossa lunghe
13	Esempi di fenomeni di trasporto nel corpo umano e compartmental modelling (uno e due compartimenti)
ORE	Laboratori
6	Esperienze di laboratorio su ingegneria tissutale in-vitro: pelle, vasi sanguigni, bronchi, osso