

UNIVERSITÀ DEGLI STUDI DI PALERMO

DIPARTIMENTO	Ingegneria
ANNO ACCADEMICO OFFERTA	2019/2020
ANNO ACCADEMICO EROGAZIONE	2020/2021
CORSO DILAUREA	INGEGNERIA MECCANICA
INSEGNAMENTO	COSTRUZIONE DI MACCHINE
TIPO DI ATTIVITA'	В
AMBITO	50302-Ingegneria meccanica
CODICE INSEGNAMENTO	02227
SETTORI SCIENTIFICO-DISCIPLINARI	ING-IND/14
DOCENTE RESPONSABILE	CERNIGLIA DONATELLA Professore Associato Univ. di PALERMO
ALTRI DOCENTI	
CFU	12
NUMERO DI ORE RISERVATE ALLO STUDIO PERSONALE	192
NUMERO DI ORE RISERVATE ALLA DIDATTICA ASSISTITA	108
PROPEDEUTICITA'	
MUTUAZIONI	
ANNO DI CORSO	2
PERIODO DELLE LEZIONI	2° semestre
MODALITA' DI FREQUENZA	Facoltativa
TIPO DI VALUTAZIONE	Voto in trentesimi
ORARIO DI RICEVIMENTO DEGLI STUDENTI	CERNIGLIA DONATELLA
	Giovedì 11:00 13:00 Ufficio, Ed. 8, scala F10, 1° piano. Previa conferma via email.
	Venerdì 10:00 11:00 Ufficio, Ed. 8, scala F10, 1° piano. Previa conferma via email.

PREREQUISITI Lo studente deve possedere conoscenze di base sui materiali, sulla fisica dei corpi, sul disegno meccanico e sulla meccanica dei solidi. RISULTATI DI APPRENDIMENTO ATTESI Conoscenza e capacita' di comprensione:

conoscenza degli aspetti metodologico- operativi di costruzione di macchine; conoscenza degli aspetti operativi nell'ambito della caratterizzazione dei materiali e della progettazione di componenti meccanici;

capacita' di comprendere, sviluppare ed applicare con originalita' idee e concetti. Capacita' di applicare conoscenza e comprensione:

capacita' di utilizzare le conoscenze di matematica e di scienze di base per interpretare e descrivere semplici problemi dell'ingegneria strutturale e dei materiali in campo meccanico;

capacita' di identificare, formulare e risolvere problemi inerenti la resistenza dei materiali e dei componenti meccanici, utilizzando le metodologie della scienza delle costruzioni e della meccanica dei materiali;

capacita' di progettare componenti meccanici per soddisfare le esigenze di resistenza, durata e costo;

capacita' di operare nel rispetto di leggi e normative e delle esigenze di sicurezza, tenendo in debito conto di costi e benefici e dell'impatto socioambientale delle soluzioni proposte;

abilita' decisionali concernenti la scelta di materiali, metodi di prova, tecniche di calcolo e semplificazione di problemi, finalizzate alla progettazione meccanica. Autonomia di giudizio:

autonomia nel raccogliere e nell'interpretare dati utili a determinare giudizi, inclusa la riflessione su temi sociali, scientifici o etici ad essi connessi; autonomia nell'ideare soluzioni innovative.

Abilita' comunicative:

abilita' nel presentare e discutere, con interlocutori specialisti e non, problematiche ed esigenze di resistenza e sicurezza di componenti meccanici ed impianti.

Capacita' d'apprendimento:

saper completare, anche attraverso lo studio individuale, la preparazione nell'ambito degli argomenti dell'insegnamento con un alto grado di autonomia.

VALUTAZIONE DELL'APPRENDIMENTO

La valutazione consiste in due prove, una scritta e una orale.

La prova scritta consiste nella risoluzione di due esercizi, in un tempo di circa 3 ore, relativi ad argomenti trattati durante il corso. Durante la prova e' consentito l'uso di libri, dispense e appunti. E' necessario l'uso di calcolatrice scientifica e riahello.

La prova scritta ha l'obiettivo di valutare la capacita' di comprensione del problema posto, la capacita' di trovare il metodo di soluzione e di analizzare in maniera critica il risultato ottenuto.

La prova scritta e' considerata non superata se gli esercizi sono risolti solo parzialmente e/o con gravi errori concettuali.

La prova orale, cui si accede al superamento della prova scritta (punteggio minimo: 18/30), consiste di almeno tre domande sull'intero programma del corso. La prova orale e' finalizzata a valutare la conoscenza degli argomenti trattati e la capacita' di analisi ed elaborazione, nonche' il possesso di una adeguata capacita' espositiva.

La prova orale e' considerata non superata se lo studente non mostra sufficiente conoscenza e comprensione degli argomenti, non ha la capacita' di analizzare correttamente problemi semplici e non possiede sufficienti capacita' espositive. Entrambe le prove vengono valutate in trentesimi, secondo la seguente modalita: Eccellente 30 - 30 e lode: eccellente conoscenza degli argomenti, eccellente proprieta' di linguaggio, eccellente capacita' analitica, eccellente capacita' di applicare le conoscenze per risolvere i problemi proposti.

Molto buono 26 – 29: ottima padronanza degli argomenti, piena proprieta' di linguaggio, ottima capacita' di applicare le conoscenze per risolvere i problemi proposti.

Buono 24 – 25: conoscenza di base dei principali argomenti, buona proprieta' di linguaggio, limitata capacita' di applicare autonomamente le conoscenze alla soluzione di problemi.

Soddisfacente 21 - 23: conoscenza senza piena padronanza degli argomenti principali, soddisfacente proprieta' di linguaggio, scarsa capacita' di applicare autonomamente le conoscenze acquisite.

Sufficiente 18 – 20: minima conoscenza di base degli argomenti principali e di proprieta' di linguaggio, scarsissima capacita' di applicare autonomamente le conoscenze acquisite.

Il voto finale e' dato dalla media dei due voti.

OBIETTIVI FORMATIVI

Il corso si propone di formare lo studente, affinche' sia in grado di analizzare e comprendere le problematiche di sollecitazione e resistenza di materiali. componenti e strutture meccaniche; di applicare le metodologie di calcolo e di progetto di componenti e strutture meccaniche: di comprendere ed apprendere le innovazioni teoriche e pratiche del settore della costruzione di macchine.

ORGANIZZAZIONE DELLA DIDATTICA

Il corso e' costituito da didattica frontale ed esercitazioni. Nella fattispecie,

ciascuna esercitazione segue ed e' relativa al macro argomento trattato durante le ore di didattica frontale.
Dispense a cura del Prof. Petrucci Shigley - Progetto e costruzione di macchine 3/ed di: Richard G. Budynas e J. Keith Nisbett, McGraw-Hill Norman E. Dowling, Mechanical Behavior of Materials, Pearson

PROGRAMMA

ORE	OPE		
	Lezioni		
7	Stato tensionale nei solidi, Equazioni del problema elastico e metodi di risoluzione. Materiali da costruzione.		
5	Criteri di resistenza per la verifica degli elementi di macchine. Concentrazione delle tensioni. Tensioni residue.		
4	Meccanica della frattura, Fattore di intensificazione delle tensioni, Tenacita' a frattura, Zona plastica all'apice della cricca.		
12	Resistenza a fatica, Meccanismo fisico del danneggiamento per fatica, Curva di Wohler, Limite di resistenza a fatica, Fattori modificanti il limite di fatica, Effetto della tensione media, Criteri di danneggiamento nel piano tensione media/alternata, Determinazione della vita a fatica, Fatica ad ampiezza variabile, Criterio di Palmgren-Miner, Manson, Marco-Starkey, Resistenza a fatica per tensioni multiassiali, Metodi di analisi di fatica multiassiale, Fatica oligociclica, Curve di Coffin-Manson, Propagazione dei difetti a fatica, legge di Paris, Effetto del rapporto tensione minima/massima.		
6	Cilindri in pressione, Equazioni del problema elastico e soluzione, Cerchiatura dei recipienti, Cilindri di piccolo spessore. Dischi rotanti, Equazioni del problema elastico e soluzione, Disco a spessore costante, Disco di uniforme resistenza.		
8	Assi ed alberi, Analisi per carichi statici, Dimensionamento e verifica a fatica, Alberi cavi. Elementi di collegamento.		
6	Tensioni di contatto, Teoria di Hertz, Fatica di contatto. Cuscinetti a rotolamento, Problemi di progetto, Vita dei cuscinetti, Coefficiente di carico dinamico, Affidabilita, Carico combinato assiale-radiale, Selezione dei cuscinetti da catalogo.		
6	Ruote dentate, Resistenza a flessione del dente, Fattore di Lewis e fattore geometrico, Resistenza alla fatica e all'usura superficiale, Formule per il calcolo e fattori correttivi.		
6	Collegamenti saldati, Sollecitazioni nei cordoni di testa e ad angolo, Dimensionamento dello spessore dei cordoni, Resistenza delle giunzioni saldate, Fatica nei giunti saldati.		
6	Collegamenti filettati, precarico, triangolo di serraggio, resistenza statica delle giunzioni bullonate, Resistenza a fatica, Giunzioni soggette a carico eccentrico.		
6	Molle, materiali per molle, coefficiente di utilizzazione, molle ad elica cilindrica di compressione-trazione, Stabilita, frequenza critica, Resistenza a fatica, Molla ad elica di torsione, Molla a barra di torsione, Molle a balestra.		
ORE	Esercitazioni		
6	Determinazione dei diagrammi delle caratteristiche di sollecitazioni, costruzione dei cerchi di Mohr e verifica statica di un albero.		
9	Rottura e vita a fatica di un componente meccanico.		
3	Cilindri di grosso spessore.		
3	Dimensionamento e verifica di alberi di trasmissione.		

Scelta di cuscinetti a rotolamento.

Collegamenti saldati e bullonati.

Verifica di ruote dentate mediante il metodo AGMA.

Dimensionamento e verifica di molle ad elica cilindrica.

3

6

3