

UNIVERSITÀ DEGLI STUDI DI PALERMO

DEPARTMENT	Ingegneria
ACADEMIC YEAR	2016/2017
BACHELOR'S DEGREE (BSC)	MECHANICAL ENGINEERING
SUBJECT	AERODYNAMICS
TYPE OF EDUCATIONAL ACTIVITY	В
AMBIT	50294-Ingegneria aerospaziale
CODE	01129
SCIENTIFIC SECTOR(S)	ING-IND/06
HEAD PROFESSOR(S)	MARRETTA ROSARIO Professore Associato Univ. di PALERMO
OTHER PROFESSOR(S)	
CREDITS	9
INDIVIDUAL STUDY (Hrs)	144
COURSE ACTIVITY (Hrs)	81
PROPAEDEUTICAL SUBJECTS	
MUTUALIZATION	
YEAR	2
TERM (SEMESTER)	2° semester
ATTENDANCE	Not mandatory
EVALUATION	Out of 30
TEACHER OFFICE HOURS	MARRETTA ROSARIO
	Monday 15:00 17:00 Proprio Ufficio
	Wednesday 15:00 17:00 Proprio Ufficio

DOCENTE: Prof. ROSARIO MARRETTA

PREREQUISITES	Fundamentals of: Math Analysis; Physics and Industrial Physics
LEARNING OUTCOMES	General theory about mechanics and study of aerodynamic fields. Vorticity and boundary layer theory. Learning Be able to recognize, apply, share and organize the contents for the whole aerodynamic pre-processing of a complete aircraft. Synthesis Be able to evaluate design variables of aerodynamic post-processing. Communications Be able to share and compare learning and managing in aerospace context. Learning Be able to acquire basic state of the art and literature. Be able to apply methods of fluid dynamic to research and development
ASSESSMENT METHODS	Speech meeting (set of 3 questions with multiple answers) 30 minutes
EDUCATIONAL OBJECTIVES	Scopes are the acknoledgement and correlation all the math-physical aspects of fluid dynamic with particular focus on actions and forces of aerodynamic field around a body in inviscid and viscid flows in sub-supersonic fields. Sweep- angled wings; propellers theories; basic info about aeroacoustics and aeroelasticity (galloping and vortex shedding)
TEACHING METHODS	Lessons, Excercises
SUGGESTED BIBLIOGRAPHY	Katz-Plotkin: Low Speed Aerodynamics, McGraw Hill; Anderson: Fundamentals of Aerodynamics, McGraw Hill; Buresti: Dispense di Fluidodinamica (fornite dal docente)

SYLLABUS

Hrs	Frontal teaching
1	Aims and scope of discipline
2	Criteria and Hypotheses
1	D'Alembert paradox and potential math process
4	Incompressible boundary layers
5	Vorticity dynamics
2	Numerical aspects and approaches for boundary layers
4	Aerodynamic forces
3	Airfoil sections characteristics and aerodynamics
4	Aerodynamic singularities and entities
2	Models and modulus of calculations
4	Supersonic aerodynamics
4	Bodies and wings in supersonic flows.
3	Compressible boundary layers (basics)
1	Vortex breakdown
12	Propellers
3	Aeroacoustics
3	Aeroelasticity
Hrs	Practice
10	Calculation and evaluation with post analysis of aerodynamic bodies with and without wake. Evaluation of lift and drag
20	Complete calculation and post analysis of a wing polar; Design of a propeller and evaluation of performances; cockpit design in compressible flow.
Hrs	Others
2	BEM applied on potential solutions