

UNIVERSITÀ DEGLI STUDI DI PALERMO

DEPARTMENT	Matematica e Informatica
ACADEMIC YEAR	2015/2016
BACHELOR'S DEGREE (BSC)	MATHEMATICS
SUBJECT	THEORETICAL MECHANICS
TYPE OF EDUCATIONAL ACTIVITY	В
AMBIT	50195-Formazione Modellistico-Applicativa
CODE	16162
SCIENTIFIC SECTOR(S)	MAT/07
HEAD PROFESSOR(S)	SAMMARTINO MARCO Professore Ordinario Univ. di PALERMO
OTHER PROFESSOR(S)	
CREDITS	6
INDIVIDUAL STUDY (Hrs)	94
COURSE ACTIVITY (Hrs)	56
PROPAEDEUTICAL SUBJECTS	11081 - DYNAMIC SYSTEMS WITH LABORATORY
MUTUALIZATION	
YEAR	3
TERM (SEMESTER)	2° semester
ATTENDANCE	Not mandatory
EVALUATION	Out of 30
TEACHER OFFICE HOURS	SAMMARTINO MARCO
	Tuesday 16:00 18:00 Dipartimento di Ingegneria, Edificio 8, ex Dipartimento di Metodi e Modelli Matematici, 1^o piano
	Wednesday 13:00 14:00 Dipartimento di Ingegneria, Edificio 8, ex Dipartimento di Metodi e Modelli Matematici, 1^o piano

DOCENTE: Prof. MARCO SAMMARTINO

PREREQUISITES	
LEARNING OUTCOMES	Conoscenza e capacità di comprensione Comprensione dei principi della Meccanica. Equazioni di moto. Formulazione variazionale della Meccanica. Leggi di conservazione ed integrali del moto. Formulazione Hamiltoniana della Meccanica.
	Capacità di applicare conoscenza e comprensione Capacità di scrivere le equazioni di moto di un sistema meccanico in presenza di vincoli. Capacità della determinazione delle frequenze delle piccole oscillazioni di un sistema dinamico attorno ad un equilibrio. Capacità di dare diverse formulazioni dello stesso problema.
	Autonomia di giudizio Lo studente è in grado di scoprire semplici integrali del moto in presenza di simmetrie del sistema meccanico. Lo studente è in grado di intuire gli equilibri del sistema e la loro stabilità.
	Abilità comunicative Capacità di esporre ad una classe degli ultimi anni della scuola secondaria superiore un elementare problema meccanico, di introdurre il concetto di integrale primo, e quello di equazioni del moto.
	Capacità d'apprendimento Lo studente al termine del corso, sarà in grado di comprendere testi più avanzati di meccanica, per esempio quelli riguardanti la formulazione simplettica della meccanica Hamiltoniana, il fenomeno della transizione al caos nei sistemi meccanici, la teoria KAM.
ASSESSMENT METHODS	Prova scritta, Prova orale.
EDUCATIONAL OBJECTIVES	Dopo un'analisi critica dei principi fondanti della Meccanica Classica, l'obiettivo del modulo è l'introduzione delle diverse formulazioni delle equazioni di moto e cioè quella Newtoniana, quella Lagrangiana e quella Hamiltoniana. Ulteriore obiettivo è quello di introdurre le tecniche per l'analisi di un sistema meccanico vincolato e per la derivazione delle soluzioni nei pressi di un equilibrio.
TEACHING METHODS	lezioni ed esercitazioni
SUGGESTED BIBLIOGRAPHY	L.Landau, E.Lifshitz, Meccanica Editori Riuniti, 1979. H.Goldstein Meccanica Classica Zanichelli, 2004. Gantmacher Lezioni di Meccanica Analitica Editori riuniti 1980. F.Scheck Mechanics, Springer, 2010.

SYLLABUS

Hrs	Frontal teaching
6	Principi della meccanica.
6	Energia, quantità di moto, momento angolare; il problema dei due corpi.
6	Equazioni cardinali della meccanica. Equazioni di moto del corpo rigido.
6	Meccanica analitica. Le equazioni di Lagrange.
4	Equilibrio, stabilità e piccoli moti.
4	Introduzione alla meccanica Hamiltoniana.
Hrs	Practice
6	Esercizi ed esempi sul moto in un campo centrale.
4	Esercizi ed esempi sul corpo rigido.
8	Esercizi sulla determinazione delle equazioni di moto nel formalismo lagrangiano.
6	Esercizi sulla determinazione delle configurazioni di equilibrio, sullo studio della loro stabilità e dei piccoli moti attorno ad esse.