

DEPARTMENT Matematica e Informatica

ACADEMIC YEAR 2024/2025

MASTER'S DEGREE (MSC) DATA, ALGORITHMS AND MACHINE INTELLIGENCE

SUBJECT LANGUAGES AND COMPILERS DESIGN

TYPE OF EDUCATIONAL ACTIVITY B

AMBIT 50341-Discipline Informatiche

CODE 24091

SCIENTIFIC SECTOR(S) INF/01

HEAD PROFESSOR(S) MANTACI SABRINA Professore Associato Univ. di PALERMO

OTHER PROFESSOR(S)
CREDITS 6

INDIVIDUAL STUDY (Hrs) 102

COURSE ACTIVITY (Hrs) 48

PROPAEDEUTICAL SUBJECTS
MUTUALIZATION
YEAR 1

TERM (SEMESTER) 2° semester

ATTENDANCE Not mandatory

EVALUATION Out of 30

TEACHER OFFICE HOURS MANTACI SABRINA
Thursday 15:00 18:00 Room 217 - second Floor. DMI - Via Archirafi 34

DOCENTE: Prof.ssa SABRINA MANTACI
PREREQUISITES In order to understand the content and to achieve the learning goals, it is

necessary for the student to be able to code in a programming language
(especially C language), to know elements of theoretical computer science
(languages, automata, regular expressions and Grammars) and algorithms
(lists, piles, trees, graphs, hash tables).

LEARNING OUTCOMES Knowledge and understanding skills
The course intends to provide students with the notions needed to understand
and address the various issues related to the compilation phases with special
attention to the lexical, syntactic, and semantic analysis that they also apply in
others contexts (language translations, parsers, scanners). The course also
aims to convey the knowledge of important automatic generation tools parser
and scanner.

Ability to apply knowledge and understanding
The course focuses on the understanding of computational models and
techniques that manage the operation of lexical and syntactic analyzers in a
modern compiler, in order to apply such methodologies on the one hand to
automatic generation or manual of such analyzers, and on the other to the
transformation and analysis of the texts guided by the syntax. Students will have
the opportunity to apply the knowledge acquired also through an elaborate
made in group using the automatic generation tools for parsers and scanners.

Judgment autonomy
Students will be guided to learn critically and responsibly topics that will be
presented to them in the classroom and in the laboratory. Each student will also
have occasion to enrich its autonomy of judgment by means of the realization of
a project or an elaborate that will be an integral part of the evaluation test.

Communication skills
Through the laboratory activities planned, the course will tend to develop
students' interaction and the ability to know how to work together, to confront
one another on the issues in order to find solutions based on knowledge
acquired during the course. The acquisition of communication skills will be
realized through the active participation of the student to the activities of
laboratory as well as by showing the results of individual or group work on topics
or issues proposed by the teacher.

Learning ability
The material offered in classroom and in the laboratory will develop the learning
ability of students who will be able to "question" in integrated way their
knowledge-skills in dealing with issues addressed. Students will also be
stimulated to learn a more in-depth and critical knowledge of the programming
languages they already know, through the study on how the process of
compiling such languages takes place.

Acquired competencies:
The student will acquire the skill of autonomously build a lexical analyzer and a
syntactic analyzer, both for compilation purposes and for other purposes, for
example related to the automatic analysis of a text.

ASSESSMENT METHODS A midterm test is scheduled in order to evaluate the acquisition of the
knowledge on lexical analysis and the syntactic analysis. In particular, the test
provides four open questions which aim to verify the ability of constructing a
parser for a given language and parse a string. The above test is evaluated in
the scale 1-30 (according to the table described below) and it aims to verify the
knowledge acquired, the elaborative skills and the correct use of technical
language. The maximum score is obtained if full possession of knowledge is
shown about the algorithms and techniques, a strong ability to process and
apply acquired knowledge to solve the proposed problems and an excellent
command of language.

Those who do not pass the midterm test, will have to take a similar written test,
which will be scheduled before the final exam is held.

At the end of the course students (preferably in groups) are assigned a study
project where it is required to design and implement a lexical-semantic with the
help of Flex and Bison programs. This test aims to verify the ability to know how
to apply the acquired knowledge, that is, the ability to define a lexical analyzer, a
syntax analyzer and semantic actions for solving a specific problem. This test
also aims to verify the student’s interaction ability and the teamwork. At the end
of the project, students will have to describe their solution proving their
exhibition ability. Such activity is evaluated over scale 1- 30 by referring to the
evaluation table described below. The average of the evaluations of the two
tests becomes the starting vote for the oral test, which consists of up to three
questions that aim to verify the acquisition of the topics covered during the class.

The final evaluation is expressed in base 1-30 and takes into account the
evaluation table described below.
Evaluation table:

Rating: Excellent
Rating: 30 - 30 cum laude
Outcome: Excellent knowledge of the topics, excellent command of language,
good analytical capacity, effective ability of interaction in the teamwork, the
student is able to apply knowledge to solve the proposed problems.

Rating: Very good
Rating: 27-29
Outcome: Good mastery of the arguments, full command of language, good
ability to interact and work in groups, the student is able to apply knowledge to
solve the proposed problems.

Rating: Good
Rating: 24-26
Outcome: Basic knowledge of the main topics, discrete command of language,
discreet ability to work in groups, with limited ability to independently apply
knowledge to the solution of the proposed problems.

Rating: Satisfactory
Rating: 21-23
Outcome: He/she does not fully master the main topics of the teaching but
possesses the knowledge, satisfactory command of language, poor ability to
know how to apply knowledge in independent fashion.

Rating: Sufficient
Rating: 18-20
Outcome: Minimum basic knowledge of the main topics of teaching and
technical language, scarce or no ability to know how to apply knowledge
autonomously acquired.

Rating: Poor
Outcome: He/she does not possess any knowledge on the main topics of the
course

Compensatory tools and dispensatory measures will be guaranteed by the
Disability and Neurodiversity Center - University of Palermo (Ce.N.Dis.) to
students with disabilities and neurodiversity, based on specific needs and in
implementation of current legislation.

EDUCATIONAL OBJECTIVES This teaching has two goals. The first one is cultural. We want to introduce a
theory that is the basis for compilation of programming languages, which is
probably the most important scientific contribution to the development and
dissemination of computer technology.
The second goal is more applicative. At the end of the course the student will be
able to independently build a lexical analyzer and a syntactic analyzer, and carry
out the relative semantic actions, making him able to solve problems of this
nature when working for a company. Even if the student will never be involved in
his/her work career in the design of a new compiler, it is very likely that he/she
will often use methodologies and techniques that belong to that theory: from
automata and Grammars used as formalisms to define the behavior of a system,
the techniques to make translators that are simpler than a real compiler (for
example, the interpreter of a configuration file).
The general structure of a compiler will be studied, by giving a particular
emphasis on the aspects of lexical analysis and parsing. Top-down parser
(recursive descent, predictive and LL(1)) and bottom-up (SLR, LR and LALR)
type parser will be studied. Finally, examples of translators for simple languages
will be examined.

TEACHING METHODS Teaching is organized in classroom and laboratory lectures, where it is expected
to have a transfer of knowledge but also, with the support of computer, the
contextual verification of the acquisition of the practical skills required. In order
to increase students' engagement collaborative learning methodologies are
used.

SUGGESTED BIBLIOGRAPHY Testo principale (main textbook)

A. Aho, M. Lam, R. Sethi, J. Ullman
COMPILATORI. Principi, Tecniche e strumenti
Addison Wesley (2009)
Seconda edizione
ISBN: 9788871925592
(ogni altra edizione del libro va bene ai fini del corso / any other edition of the
book (even the one in english) is good for the porpouse of the course)
Testi di consultazione (consultation textbooks)

A. Aho, M. Lam, R. Sethi, J. Ullman
Compilers, Principles, Techniques & Tools
Addison Wesley

Stefano Crespi Reghizzi
Linguaggi Formali e Compilazione
Esculapio (2015)

SYLLABUS
Hrs Frontal teaching

4 Introduction:
Programming Languages and Programming Language Processors.
Compilers and Languages. Machine Languages, Assembly Languages and Programming Languages
evolution. Compilers and Interpreters. Virtual Machine. Structure of a compiler: Preprocessor. Linker and
Loader. Phases of compilation. Front End and Back End. Scanning of a compiler.

6 Lexical analysis:
Preliminary operations. Token and Lexemes. Lexical errors. Tokens and regular expressions. Regular
definitions. Elimination of ambiguity. Finite Automata. DFA implementations. NFA simulations. Automatic
Generation of a scanner. Use of Flex.

6 Resolution of Exercises about lexical analysis using FLEX software

6 Syntactic analysis:
Context-free Grammars. Derivation trees. Ambiguous grammars. Deterministic and non-deterministic stack
automata. Computational Complexity of a stack automata. Earley Algorithm. Syntactic errors and methods of
error management.

6 Descending or top-down parser: Recursive descent parser. Parser LL(1). Elimination of left recursion. Left
Factorization. First and Follow sets.
Ascending or bottom up-parser: Parser shift-reduce. Parser LR(0). Parser SLR. Parser LR(1). Parser LALR(1).
Properties of languages and of Grammars LR (k). Comparison between LL(k) and LR(k) grammars. Automatic
parser generators. Use of Bison.

6 Semantical analysis:
Static and dynamic semantics. Grammars with attributes. Semantics syntax driven. Decorated Syntactic tree.
Computation of attributes. Dependency graph. Grammar with S- attributes. Grammar with L-attributes.
Topological sorting of dependency graphs. Symbols table. Various types of implementations through arrays,
chained lists, and ABRs. Implementation through hash table with chaining. Visibility Attributes and Methods of
Implementation. Type checking. Equivalence of types. Type coercion.

6 Resolving exercises about syntactic analysis with the help of Bison software.

6 Use the symbol table.

2 Code Generation:
Intermediate code. Three-way code. Data Structures for the Implementation of 3AC. Code for the virtual
machine. P-code. Code optimization. Examples of machine-independent optimizations. Generators of object
code. Examples of machine-dependent optimizations.

	MANTACI SABRINA
	Prof.ssa SABRINA MANTACI
	1
	Frontal teaching
	Prof.ssa SABRINA MANTACI

