UNIVERSITÀ DEGLI STUDI DI PALERMO

DEPARTMENT	Fisica e Chimica - Emilio Segrè		
ACADEMIC YEAR	2023/2024		
BACHELOR'S DEGREE (BSC)	PHYSICS		
INTEGRATED COURSE	MATHEMATICAL ANALYSIS II		
CODE	13712		
MODULES	Yes		
NUMBER OF MODULES	2		
SCIENTIFIC SECTOR(S)	MAT/05		
HEAD PROFESSOR(S)	BRANDOLINI BARBARA	Professore Ordinario	Univ. di PALERMO
OTHER PROFESSOR(S)	BRANDOLINI BARBARA MARRAFFA VALERIA	Professore Ordinario Professore Associato	Univ. di PALERMO Univ. di PALERMO
CREDITS	12		
PROPAEDEUTICAL SUBJECTS			
MUTUALIZATION			
YEAR	2		
TERM (SEMESTER)	Annual		
ATTENDANCE	Not mandatory		
EVALUATION	Out of 30		
TEACHER OFFICE HOURS	BRANDOLINI BARBARA Tuesday 10:00 13:00 MARRAFFA VALERIA Monday 10:30 12:30	viale delle Scienze, Diparti ex Dipartimento di Metodi citofono 6 Dipartimento di Matematic studio n. 221	o di Ingegneria, Edificio 8, delli Matematici, II piano, formatica, Via Archirafi 34,

PREREQUISITES	Contents of the course of Mathematical Analysis 1; matrix algebra, eigenvalues and eigenvectors of a matrix, diagonalization; knowledge of the space R^3.
LEARNING OUTCOMES	Knowledge and understanding The course in Mathematical Analysis 2 deal with the following arguments: differential calculus of functioms of several variables, multiple integrals, differential equations and basics of complex analysis. The aim of the course is to develop a rigorous method of reasoning and the ability to use the specific language and methods of the discipline. The learning outcomes are achieved by participating in lectures and integrative teaching activities in the classroom. The achievement of objectives is verified by the specific tests and final exams. TEACHING METHODS
Applying knowledge and understanding	
At the end of the course the student is able to solve problems of moderate	
difficulty and repeat rigorous proofs. Moreover, she/he can apply the learnt	
resolution techniques of the exercises in more general fields of Mathematics.	
These objectives are achieved through the completion of the demonstrations,	
not developed in full, and the resolution of problems of moderate difficulty	
regarding the topics treated during the course.	

SYLLABUS

Hrs	Frontal teaching
6	Green's Theorem, regular surfaces and surface integrals, Stoke's Theorem, Divergence's Theorem
8	Ordinary differential equations, Cauchy problems, local or global existence and uniqueness, regularity of solutions, continuous dependence on initial conditions, integration of equation of first and second order
8	Linear ordinary differential equations, variation of parameters method. Linear ordibnary differential equations with costant coefficients: homogeneous equations, non-homogeneous equations, systems of equations
10	Functions with complex variables, holomorfic functions, the Cauchy-Riemann equations, complex integration, the Cauchy integral formula, complex power series, Taylor series, Laurent series, singularities, the residue theorem

Hrs	Practice
6	Exercises on the Green's theorem, the change of variables in multiple integrals, surface integrals, the Stoke's theorem and the divergence theorem
6	Exercises on first and second order ordinary differential equations
6	Exercises on linear ordinary differential equations and systems of linear ordinary differential equations
6	Exercises on complex variables functions, holomorfic functions, Cauchy-Riemann equations, complex integration, Cauchy integral formula, complex power series, Taylor series, Laurent series, singularities and residue theorem

SYLLABUS

Hrs	Frontal teaching
8	Sequences of functions: pointwise and uniform convergence. Exchange of limits; limit and derivative, limit and integral. Series of functions. Power series. Analytic functions. Fourier series .
8	Topology of R^{\wedge} n. Limits, continuity, derivability and differentiability of two or more variables. Problems of free and constrained optimization.
4	Local inversion theorem. Implicit functions, Dini theorem. Homogeneous functions.
8	Curves and integrals; linear differential forms.
4	Multiple integrals in normal domains and reduction formulas. Change of variables.
Hrs	
8	Sequences of functions: pointwise and uniform convergence. Exchange of limits; limit and derivative, limit and integral. Series of functions. Power series. Analytic functions. Fourier series .
8	Topology of R^{\wedge} n. Limits, continuity, derivability and differentiability of two or more variables. Problems of free and constrained optimization.
6	Curves and integrals; linear differential forms.
2	Multiple integrals in normal domains and reduction formulas. Change of variables.

