UNIVERSITÀ DEGLI STUDI DI PALERMO

DEPARTMENT	Scienze Economiche, Aziendali e Statistiche
ACADEMIC YEAR	$2023 / 2024$
BACHELOR'S DEGREE (BSC)	ECONOMICS AND FINANCE
SUBJECT	GENERAL MATHEMATICS
TYPE OF EDUCATIONAL ACTIVITY	A
AMBIT	$50178-$ Statistico-matematico
CODE	04897
SCIENTIFIC SECTOR(S)	SECS-S/06
HEAD PROFESSOR(S)	LACAGNINA VALERIO Professore Associato Univ. di PALERMO
OTHER PROFESSOR(S)	9
CREDITS	145
INDIVIDUAL STUDY (Hrs)	80
COURSE ACTIVITY (Hrs)	
PROPAEDEUTICAL SUBJECTS	1
MUTUALIZATION	1° semester
YEAR	Not mandatory
TERM (SEMESTER)	Out of 30
ATTENDANCE	LACAGNINA VALERIO MVALUATION $\quad 10: 00 \quad 12: 00 \quad$ Stanza 113, piano primo, Dipartimento SEAS. TEACHER OFFICE HOURS

DOCENTE: Prof. VALERIO LACAGNINA- Matricole DISPARI, - Matricole PARI
$\left.\begin{array}{|l|l|}\hline \text { PREREQUISITES } & \begin{array}{l}\text { Elementary equations and inequalities: linear, quadratic and higher grade. } \\ \text { Logarithmic and exponential equations and inequalities. Irrational equations and } \\ \text { inequalities. Fractional equations and inequalities. Absolute value and its } \\ \text { properties. Notions of Trigonometry: radian system, sine, cosine and tangent. }\end{array} \\ \hline \text { LEARNING OUTCOMES } & \begin{array}{l}\text { Knowledge and understanding: acquisition of functional calculus, limits calculus, } \\ \text { differential and integral calculus for real functions of a real variable, linear } \\ \text { algebra elements, power series. Applying knowledge and understanding: ability } \\ \text { to handle mathematical formalism: from a real operating environment to a } \\ \text { hteoretical framework in which variables are used to solve problems and to } \\ \text { model real situations. Ability to use abstract concepts and models for concrete } \\ \text { situations. Making judgements: being able to assess the potential and the limits } \\ \text { of the available analytical tools to the applied disciplines. Communication: being } \\ \text { able to relate topics addressed by using logical and formal languages correctly. } \\ \text { Lifelong learning skills: developing the learning capacities needed to undertake } \\ \text { advanced studies with a high degree of autonomy. }\end{array} \\ \hline \text { ASSESSMENT METHODS } & \begin{array}{l}\text { Multiple choice test followed by a short oral discussion. Each question has five } \\ \text { possible answers: only one gives } 1 \text { point, two give 0 points, one gives - } 0.25 \\ \text { points, one gives -0.5 points (in order to discourage the random answer) and } \\ \text { finally the question not answered or with two or more answers gives } 0 \text { points. } \\ \text { The written exam can be passed in one of the two possible ways: }\end{array} \\ \hline \text { TEACHING METHODS } \\ \text { 1) (Recommended) Two partial written exams: intermediate exam in November } \\ \text { and final exam in one of the general sessions scheduled for the academic year. } \\ \text { The first part consists of } 6 \text { questions, it weighs one third of the final vote, and it } \\ \text { lasts 40 minutes. The second and final part consists of } 8 \text { questions, it weighs } \\ \text { two thirds of the final vote, and it lasts } 50 \text { minutes. In the first test to obtain 18/30 } \\ \text { you need to get at least } 2 / 6 \text { points. In the second test to obtain } 18 / 30 \text { you need } \\ \text { to get at least 3/8 points. The final grade is the weighted average of the } \\ \text { (rounded) marks obtained in the two tests. }\end{array}\right\}$

	Per le esercitazioni si consiglia il testo: •P. Marcellini, C. Sbordone, Esercitazioni di Matematica, Vol. I e II, Liguori Editore.

SYLLABUS

Hrs	Frontal teaching
1	Presentation and course objectives.
4	Set theory: numerical sets, hints on complex numbers set, set operations, set of parts of a set, cartesian product, partition of a set, algebra of sets, relations and elementary functions, mathematical logic.
6	$\mathrm{R}^{\wedge} 2$ topology: neighbourhood of a point, union and intersection of neighbourhoods of a point, interior points, exterior points, isolated points, limit point, boundary of a set, open set, closed set, convex set, intervals.
4	Real valued functions: representation of a function, odd and even functions, periodic functions, bounded function, unbounded function, lower and upper bound of a function, maximum and minimum of a function, monotone functions, inverse function, absolute value functions, rational functions, irrational functions, exponential functions, logarithmic functions, trigonometric functions, convex functions.
6	Limits of a function: definition, theorems, computation theorems, left and right limits, limits of monotone functions, notable special limits.
1	Continuous functions: definition, singularity points, continuity theorems, composition of continuous functions, continuous functions defined on a compact set or interval, continuity of inverse functions.
7	Differential calculus: definition of derivative of a function, derivatives of elementary functions, relationship between derivability and continuity, derivative of composite functions, derivative of inverse functions, derivative of a sum of function, derivative of a product of functions, derivative of the quotient of a function, derivative of the absolute value of a function, derivative of a logarithmic function, derivative of a function raised to another function, geometric meaning of the derivative, right and left derivative, inflection points, higher derivatives, differentiability of a function, higher differentials, local slope of a function, relative maximum and minimum, theorems of Rolle, Cauchy and Lagrange, large growth, De L'Hospital rule, convex functions, asymptotes.
6	Integral calculus: definition, properties, fundamental theorem of integral calculus, calculating integral: direct integration, integration by parts, integration by change of variable, improper integral.
10	Power Series: sequences, series, sequences of functional values, convergence criterias, power series, Taylor and Mac Laurin series, Taylor and Mac Laurin polynomials.
7	Matrices: definition, sum of matrices, scalar multiplication, matrix multiplication, transposition of a matrix, linear combination of matrices, square matrix, triangular matrices, diagonal matrices, scalar matrix, determinant of a square matrix, determinants properties, minor of a matrix, Laplace theorems, property of determinants, adjugate matrix, rank of a matrix.
4	Systems of linear equations: definition, Gauss reduction, row reduction, pivot and free variables, geometric interpretation, homogeneous systems, Cramer theorem, Rouche-Capelli theorem.
Hrs	Practice
24	In-class exercises on all subjects of face to face lecturers: 2 hrs for basic subjects, 3 hrs for limits and continuity, 3 hrs for differential calculus, 2 hrs for function study, 4 hrs for integral calculus, 4 hrs for power series, 2 hrs for matrices and linear equations systems, 4 hrs for preparation to intermediate and final exam.

