

UNIVERSITÀ DEGLI STUDI DI PALERMO

DEPARTMENT	Scienze Economiche, Aziendali e Statistiche		
ACADEMIC YEAR	2023/2024		
MASTER'S DEGREE (MSC)	STATISTICS AND DATA SCIENCE		
INTEGRATED COURSE	NETWORK ANALYSIS AND OPTIMIZATION - INTEGRATED COURSE		
CODE	21925		
MODULES	Yes		
NUMBER OF MODULES	2		
SCIENTIFIC SECTOR(S)	SECS-S/06		
HEAD PROFESSOR(S)	TUMMINELLO MICHELE Professore Ordinario Univ. di PALERMO		
OTHER PROFESSOR(S)	TUMMINELLO MICHELE Professore Ordinario Univ. di PALERMO		
	SIMONETTI ANDREA Ricercatore a tempo Univ. di PALERMO determinato		
CREDITS			
CREDITS	6		
PROPAEDEUTICAL SUBJECTS	6		
	6 		
PROPAEDEUTICAL SUBJECTS	6 1		
PROPAEDEUTICAL SUBJECTS MUTUALIZATION			
PROPAEDEUTICAL SUBJECTS MUTUALIZATION YEAR	1		
PROPAEDEUTICAL SUBJECTS MUTUALIZATION YEAR TERM (SEMESTER)	1 2° semester		
PROPAEDEUTICAL SUBJECTS MUTUALIZATION YEAR TERM (SEMESTER) ATTENDANCE	1 2° semester Not mandatory		
PROPAEDEUTICAL SUBJECTS MUTUALIZATION YEAR TERM (SEMESTER) ATTENDANCE EVALUATION	1 2° semester Not mandatory Out of 30		
PROPAEDEUTICAL SUBJECTS MUTUALIZATION YEAR TERM (SEMESTER) ATTENDANCE EVALUATION	1 2° semester Not mandatory Out of 30 SIMONETTI ANDREA		
PROPAEDEUTICAL SUBJECTS MUTUALIZATION YEAR TERM (SEMESTER) ATTENDANCE EVALUATION	1 2° semester Not mandatory Out of 30 SIMONETTI ANDREA Tuesday 16:00 18:00 Edificio 13, I piano. Building 13, I floor,		

DOCENTE: Prof. MICHELE TUMMINELLO

Algebra. Differential and integral calculus. Gradient and Hessian of a function of several variables. Convexity of a function of several variables. First and second order condition of optimality. Elementary programming in R. LEARNING OUTCOMES 1. Knowledge and understanding- definition and description of unconstrained and quadratic optimization models. Definition and vector representation of discrete optimization problems. Ability to Identify and discuss the properties of a network. 2. Applying knowledge and understanding-Ability to Implement a classification model in Python by solving an optimization problem. Ability to analyze the properties of a network. 3. Making judgements Ability to analyze a real optimization problem and choose the appropriate mathematical model to implement a classification model is sperachneets. 4. Communication skills-Present the results in professional way through pictures and spreadsheets. 5. Learning skills-Conduct research and analysis in the field of decision science using optimization module, the test involves working on a project related to the study of a real dataset for classification models. ASSESSMENT METHODS The exam consists of two parts related to the two modules taught. For the Optimization module, the test involves working on a project related to the study of a real dataset for classification models. ASSESSMENT METHODS The exam consists of working on a project related to the study of a real dataset for classification model, the test involves working on a project related to the study of a real dataset for classification model and presentation describing its content. For the Networks module, the exam consists of working on a project related to the study of a real	DOCENTE: Prof. MICHELE TUMMINELLO	
and constrained optimization. Ability to Identify and discuss for convex, linear and quadratic optimization models. Definition and vector representation of discrete optimization problems. Ability to Identify and discuss the properties of a network. 2. Applying knowledge and understanding-Ability to Implement a classification model in Python by solving an optimization problem. Ability to analyze the properties of a network using Python or R. 3. Making judgements Ability to analyse a real optimization problem and choose the appropriate mathematical model to implement a classification model. Ability to analyse a real optimization problem and choose the appropriate mathematical model to implement a classification model. Ability to analyse a real optimization and extraction science using optimization and metrics. 4. Communication skills-Present the results in professional way through pictures and spreadsheets. 5. Learning skills-Conduct research and analysis in the field of decision science using optimization module, the test involves working on a project related to the study of a real network, preparing a brief report on the project, and giving an oral presentation describing its content. For the Networks module, the exam consists of working on a project related to the study of a real network, preparing a brief report on the project, and giving an oral presentation describing its content. For the Networks module, the exam consists of working on a project related to students who demonstrate their ability to describe the main properties of a classifier and the methods used for parameter estimation. For the Networks module, a passing grade will be assigned to students who demonstrate their ability to describe the main properties of the network, using the metrics considered during the cou	PREREQUISITES	algebra. Differential and integral calculus. Gradient and Hessian of a function of several variables. Convexity of a function of several variables. First and second
Optimization module, the test involves working on a project related to the study of a real dataset for classification models, preparing a brief report on the project, and giving an oral presentation describing its content. For the Networks module, the exam consists of working on a project related to the study of a real network, preparing a brief report on the project, and giving an oral presentation describing its content. Both projects are agreed upon with the instructor. For the Optimization module, a passing grade will be assigned to students who demonstrate their ability to describe the main properties of a classifier and the methods used for parameter estimation. For the Networks module, a passing grade will be assigned to students who demonstrate their ability to describe the main properties of the network, using the metrics considered during the course. The final grade is the arithmetic average of the grades obtained in both modules. The reports for both modules should be written in English. The final presentation for both modules will typically be conducted in English. However, the instructors may choose to discuss one or more topics in Italian if they deem it appropriate.	LEARNING OUTCOMES	 Applying knowledge and understanding-Ability to Implement a classification model in Python by solving an optimization problem. Ability to analyze the properties of a network using Python or R. Making judgements Ability to analyse a real optimization problem and choose the appropriate mathematical model to implement a classification model. Ability to analyse a real optimization problem and choice of the appropriate method to search for solutions. Ability to analyze e real network by choosing the appropriate indicators and metrics. Communication skills-Present the results in professional way through pictures and spreadsheets. Learning skills-Conduct research and analysis in the field of decision science
TEACHING METHODS Lectures and practices	ASSESSMENT METHODS	Optimization module, the test involves working on a project related to the study of a real dataset for classification models, preparing a brief report on the project, and giving an oral presentation describing its content. For the Networks module, the exam consists of working on a project related to the study of a real network, preparing a brief report on the project, and giving an oral presentation describing its content. Both projects are agreed upon with the instructor. For the Optimization module, a passing grade will be assigned to students who demonstrate their ability to describe the main properties of a classifier and the methods used for parameter estimation. For the Networks module, a passing grade will be assigned to students who demonstrate their ability to describe the main properties of the network, using the metrics considered during the course. The final grade is the arithmetic average of the grades obtained in both modules. The reports for both modules should be written in English. The final presentation for both modules will typically be conducted in English. However, the instructors may choose to discuss one or more topics in Italian if they deem
	TEACHING METHODS	Lectures and practices

MODULE OPTIMIZATION

Prof. ANDREA SIMONETTI

SUGGESTED BIBLIOGRAPHY

S. Boyd and L.Vandenberghe. Convex Optimization. Cambridge University Press. 2004.

A. Ohri. Python for R users: a data science approach. John Wiley & Sons Inc. 2018

 G. James, D. Witten, T. Hastie, R. Tibshirani. An introduction to statistical learning with applications in R. Springer. 2021

 AMBIT
 50608-Matematico applicato

 INDIVIDUAL STUDY (Hrs)
 54

 COURSE ACTIVITY (Hrs)
 21

 EDUCATIONAL OBJECTIVES OF THE MODULE

At the end of the course, the student will be able to:

1) Define a constrained and unconstrained optimisation problem

2) Determine the maxima and minima of constrained and unconstrained optimisation problems

3) Use Python software to implement classification models

4) Understand the concept of overfitting and ross-validation

SYLLABUS

Hrs	Frontal teaching
2	Description of course objectives. Constrained and unconstrained optimisation. Definition of convex functions and sets. First and second order conditions.
4	Constrained optimisation with equality constraints and inequality constraints. Convex and non- convex optimisation. Lagrange problems. Duality and Lagrangian duality.
4	Support Vector Machine (SVM). The kernel trick. Polynomial kernels and the radial basis function. Non-linear and soft margin kernels.
2	Machine Learning Approaches. Training a machine learning model, bias-variance trade-off, overfitting, cross-validation.
Hrs	Practice
2	Introduction to Python
3	Introduction to Numpy and Pandas modules for data manipulation
4	Implementation of Supervised Classification Models via Support Vector Machine

MODULE NETWORKS

Prof. MICHELE TUMMINELLO

SUGGESTED BIBLIOGRAPHY

M. Newman, Networks: An Introduction, Oxford University Press.

D. Pham, D. Karaboga, Intelligent Optimisation Techniques, Springer.

D. Easley and J. Kleinberg, Networks, Crowds and Markets, Cambridge.		
AMBIT	50608-Matematico applicato	
INDIVIDUAL STUDY (Hrs)	54	
COURSE ACTIVITY (Hrs)	21	

EDUCATIONAL OBJECTIVES OF THE MODULE

OBJECTIVES OF THE UNIT are to: 1) construct a network model of a real world system and recognize its structure; 2) provide a vector representation of the space of solutions to the problem of modularity optimization and use heuristic stochastic optimization methods to identify sub-optimal solutions; 3) analyze the convergence of an iterative and stochastic algorithm that provides suboptimal solutions to the modularity optimization problem; 4) understand the difference between accuracy and precision of a solution; 5) describe the role of communities in a realization of the SIR model.

	SYLLABUS		
Hrs	Frontal teaching		
2	An introduction to networks. Descriptive analysis: degree, betweenness centrality, page rank, clustering coefficient.		
2	Degree distribution, scale-free networks, Albert-Barabasi model		
2	Stochastic processes on networks. Mean-field models. The SIR model.		
2	Community detection through modularity optimization		
2	Simulated annealing, genetic algorithms, taboo search, and extreme optimization to optimize modularity.		
2	The infomap method		
Hrs	Practice		
4	Application of simulated annealing and genetic algorithms to real examples of optimization problems (e.g. the traveller salesman problem)		
5	R and C tools for modularity optimization.		