UNIVERSITÀ DEGLI STUDI DI PALERMO

DEPARTMENT	Ingegneria
ACADEMIC YEAR	$2023 / 2024$
BACHELOR'S DEGREE (BSC)	ENERGY ENGINEERING AND RENEWABLE ENERGIES
SUBJECT	GEOMETRY
TYPE OF EDUCATIONAL ACTIVITY	A
AMBIT	$50292-$ Matematica, informatica e statistica
CODE	03675
SCIENTIFIC SECTOR(S)	MAT/03
HEAD PROFESSOR(S)	FAVACCHIO GIUSEPPE Ricercatore a tempodeterminato
OTHER PROFESSOR(S)	6
CREDITS	96
INDIVIDUAL STUDY (Hrs)	54
COURSE ACTIVITY (Hrs)	
PROPAEDEUTICAL SUBJECTS	1
MUTUALIZATION	1° semester
YEAR	Not mandatory
TERM (SEMESTER)	Out of 30
ATTENDANCE	FAVACCHIO GIUSEPPE Tuesday $9: 00 \quad 10: 00 ~$
EVALUATION	
TEACHER OFFICE HOURS	

PREREQUISITES	Solving equations and inequalities of degree less than or equal to 3. Factorization of polynomials through elementary procedures such us the "common factor collection" method and the "difference of squares" formula. Goniometric functions: sine, cosine and tangent; and their value in the most important angles. Square root and absolute value of a real number. Elementary logic and elementary set theory. There is no formal prerequisite with other courses.
Knowledge and understanding The student will acquire the knowledge of the main topics of algebra and linear geometry. In particular, definitions and theorems concerning the fundamental concepts of vector spaces, linear applications and endomorphisms, basic constructions and theorems concerning lines and planes in space.	
EDUCATIONAL OBJECTIVES	
Applying knowledge and understanding: The student will be able to use the theoretical methods and tools introduced during the course to solve problems such as knowing how to calculate the rank of a matrix, knowing how to study a vector space, knowing how to study a linear application, knowing how to determine the eigenvalues and eigenvectors of an endomorphism, knowing the diagonalization of a matrix, being able to solve linear geometry problems concerning points, lines and planes in space.	
ASSESSMENT METHODS	lhe
Making judgments	
The student will be stimulated to independently carry out exercises on the topics	
covered in order to critically monitor their own learning process.	
They will be able to autonomously develop solutions to the main problems	
covered by the course; they will choose the most effective strategy based on the	
learned results.	
Constructive discussion with other students and with the teacher will be	
encouraged.	

	Knowing how to establish the structure of a linear system and put in relation with the whole of the geometric structure of the solutions. Knowing how to determine the eigenvalues and the corresponding eigenspaces of an endomorphism. Knowing how to determine a geometric entity subject to conditions. Knowing how to study the mutual position of two affine subspaces. Knowing how to properly set up a hypothetical-deductive argument.
TEACHING METHODS	The course is organized in frontal lessons and exercises. During the frontal lessons the contents of the course will be rigorously presented and analyzed together with meaningful examples, applications and exercises. The student will be invited to autonomously solve selected exercises.
SUGGESTED BIBLIOGRAPHY	Appunti e slides del corso del docente (Professor's notes and slides) Serge Lang, "Algebra Lineare", Bollati Boringhieri, 2014; ISBN 978-8833958699

SYLLABUS

Hrs	Frontal teaching
4	Numerical fields. Vector algebra: free vectors, operations with vectors, size and bases. Scalar product, vector product, vector norm, versors.
4	Vector spaces, generators, linearly independent vectors. Dimension and basis of a vector space.
4	Matrices, row-reduction, rank and determinant.
4	Matrices, rank and determinant. Resolution of linear systems. Rouché-Capelli e Cramer theorems.
4	Study of lines and planes in the space.
4	Linear maps and their study.
4	Eigenvalues and eigenvectors.
2	Matrix similarity. Diagonalizable matrices.
Hrs	
3	Matrix operations: sum, linear combinations, row-by-column product
3	Vector algebra. Matrix operations: row reduction, rank, determinant, inverse
3	Study of linear systems by applying the Theorem of Rouché-Capelli e Cramer.
3	Linear geometry in the plane and in the space.
3	Linear functions theory. Image and Kernel subspaces.
3	Linear functions theory. Matrix representation of a linear map.
3	Eigenvalues and eigenvectors.
3	Study of endomorphisms. Matrix similarity. Diagonalizable matrices.

