

UNIVERSITÀ DEGLI STUDI DI PALERMO

-	
DEPARTMENT	Ingegneria
ACADEMIC YEAR	2022/2023
MASTER'S DEGREE (MSC)	ELECTRONICS AND TELECOMMUNICATIONS ENGINEERING (FULLY ONLINE)
SUBJECT	DATA ANALYSIS
TYPE OF EDUCATIONAL ACTIVITY	C
AMBIT	20925-Attività formative affini o integrative
CODE	21738
SCIENTIFIC SECTOR(S)	ING-INF/04
HEAD PROFESSOR(S)	SFERLAZZA ANTONINO Ricercatore a tempo Univ. di PALERMO determinato
OTHER PROFESSOR(S)	
CREDITS	6
INDIVIDUAL STUDY (Hrs)	108
COURSE ACTIVITY (Hrs)	42
PROPAEDEUTICAL SUBJECTS	
MUTUALIZATION	
YEAR	1
TERM (SEMESTER)	1° semester
ATTENDANCE	Not mandatory
EVALUATION	Out of 30
TEACHER OFFICE HOURS	SFERLAZZA ANTONINO
	Monday 15:00 17:00 Ufficio del Docente o su M. Teams (4r406w2)
	Thursday 11:00 13:00 Ufficio del Docente o su M. Teams (4r406w2)

PREREQUISITES	Basics of Automatic Controls, Signal Analysis, probability theory and Linear Algebra are recommended.
LEARNING OUTCOMES	Knowledge and understanding: At the end of the course, the student will have knowledge of stochastic processes and random variables, first and second order moments, Estimation Algorithms, BLUE, MINIMUM VARIANCE, GAUSS-Markov, Maximum likelihood estimation, Minimum Squares method. Optimal filtering and estimation of systems that can be modeled through stochastic processes.
	Applied knowledge and understanding: Given a stochastic system, the student will be able to design an optimal filter for estimation and/or prediction of stochastic processes. Given a dynamic system with a known model, but with unknown parameters, the student will be able to design an identification experiment that allows to estimate the unknown parameters of the model. Moreover, he will be able to choose the appropriate input-output variables in an identification experiment.
	Judgements: The student should be able to generalize the techniques and concepts acquired during the course and to establish the relationships with other subjects.
	Communication skills: The student will learn the ability to rationally communicate her/his knowledge about the concepts and methods of the discipline, with a good level of clearness, fluency and correct use of technical language. To achieve this goal, the student can rely on the video lectures and on the interactions with the tutor.
	Learning skills: The course aims to stimulate the student's interest in a rigorous approach to deal with of the various topics covered by the course. The student who acquires this study methodology will certainly be able to continue his engineering studies with greater autonomy and with greater profit.
ASSESSMENT METHODS	EXAM ORGANIZATION The examination is based on a written test and on the evaluation of the student homework. The grade of the written test is given in the range 0-25, while the grade of the homework in the range 0-5. The final grade is given by the sum of the written test and homework evaluation. The minimum grade to pass the test is 18/30.
	 DESCRIPTION OF THE TESTS The written test is divided in two parts: the first part includes two exercises similar with that ones proposed at the end of each teaching module; the second part includes open and semi-structured questions about all the course contents. The written test lasts 1.5 hours. The homework is based on the autonomous elaboration of an advanced/ research topic (typically about estimation techniques and optimal filtering) selected by the student, which is organized in a power-point presentation. The homework allows to assess: The capability of reading and understanding the research literature and the technology standards related to the course topics; The ability of reinterpretation of the concepts and interdisciplinary connections, showing evidence for autonomously undertaking further studies or professional activity.
	LEARNING OUTCOMES In order to provide the overall evaluation, we will estimate the results achieved in the following course objectives. Knowledge and understanding: Evaluation of knowledge, understanding and integration of principles, concepts, methods and techniques of the discipline. Applying knowledge: Evaluation of capabilities in applying theoretical and technical knowledge for tackling and solving problems; evaluation of the autonomy level and originality of proposed solutions. Making judgements: Evaluation of logical, analytical and critical abilities for reaching appropriate judgments and decisions, based on available information and data. Communication skills and learning skills: Evaluation of the ability to communicate knowledge, analysis and conclusions, with a good level of
	GRADES 30-30 and laude: Excellent. Full knowledge and understanding of concepts and methods of the discipline, excellent analytical skills even in solving original problems; excellent communication and learning skills.

27-29: Very good. Very good knowledge and unders methods of the discipline; very good communication of concepts and methods applications. 24-26: Good. Good knowledge of main concepts an discrete communication skills; limited autonomy for methods for solving original problems. 21-23: Satisfying. Partial knowledge of main concept discipline; satisfying communication skills; scarce ju 18-20: Acceptable: Minimal knowledge of concepts of discipline; minimal communication skills; very poor of Non acceptable: Insufficient knowledge and underst methods of the discipline.	a skills; very good capability d methods of the discipline; applying concepts and ots and methods of the dgment autonomy. and methods of the or null judgement autonomy.
EDUCATIONAL OBJECTIVES The aims of the course are the following: 1) To introduce the stochastic processes, to evaluat introduce the linear models of stochastic processes. 2) To give basics of estimation theory, using both parapproaches; 3) To learn optimal filtering techniques for stochastic	arametric and Bayesian
TEACHING METHODS The course is organized in 3 modules, each one inc (pre-recorded) and a set of e-tivity: More into details following one: 1) Stochastic processes (7 hours of video lectures); 2) Estimation theory (7 hours of video lectures); 3) Optimal filtering (7 hours of video lectures).For each module, we propose a set of exercises as also devised to facilitate the self-assessment of the expect that each student will dedicate about 21 hour one half of the activities are proposed as activities to autonomously by the students, while another half wi the course tutor. More into details, the interactive ac module are the following one: 1)Laboratory on the usage of MATLAB for computat models of stochastic processes (3 hours with tutor); 2)Laboratory on the usage of MATLAB for implement algorithm (3 hours); exercises (4 hours); 3)Laboratory on the usage of MATLAB for implement Wiener's filters (3 hours); exercises (4 hours); The activities. The overall number of hours for the individual study to additional about 90 hours, which include 21 hours lectures.	additional learning activities, learning outcomes. We rs for these activities. About o be carried out ill be supervised or led by ctivities planned for each tion and simulation of linear exercises (4 hours); ntation of estimation ntation of IIR and FIR ng platform, also exploiting organization of the activities is estimated equal
SUGGESTED BIBLIOGRAPHY - F. L. Lewis, Optimal Estimation, John Wiley & Son 0471837415. - E. W. Kamen and J. K. Su, Introduction to Optimal ISBN: 978-1-4471-0417-9.	Estimation, Springer, 1999 -
- T. Soderstrom, Discrete-time Stochastic Systems, 978-1-4471-0101-7. - L. Ljung, Identification: Theory for the User, Prentic 0136566952. - Lectures slides.	

SYLLABUS

Hrs	Frontal teaching
2	Stochastic processes: definitions and properties, examples of stochastic processes (MODULE 1)
2	Frequency analysis (MODULE 1)
3	Linear models of stochastic processes (MODULE 1)
1	Introduction to estimation theory (MODULE 2)
3	Parametric estimation, least squares estimator and Gauss-Markov estimator (MODULE 2)
1	Maximum likelihood estimate (MODULE 2)
2	Bayesian estimate and minimum mean square error estimate (MODULE 2)
3	Optimal filtering, Wiener FIR filter, Wiener FIR predictor (MODULE 3)
4	Spectral factorization and Wiener IIR predictor (MODULE 3)
Hrs	Practice
4	Exercises about stochastic processes (E-TIVITY, MODULE 1)
4	Exercises about estimation theory (E-TIVITY, MODULE 2)
4	Exercises about optimal filtering (E-TIVITY, MODULE 3)

Hrs	Workshops
3	Computation and simulation of linear models of stochastic processes with MATLAB (E-TIVITY, MODULE 1)
3	Design of an estimation algorithm using MATLAB (E-TIVITY, MODULE 2)
3	Implementation of IIR and FIR Wiener's filters using MATLAB (E-TIVITY, MODULE 3)