

UNIVERSITÀ DEGLI STUDI DI PALERMO

DEPARTMENT	Architettura	
ACADEMIC YEAR	2022/2023	
BACHELOR'S DEGREE (BSC)	ARCHITECTURE AND PROJECT IN BUILT SPACE	
SUBJECT	MECHANICS OF MATERIALS AND THEORY OF STRUCTURES	
TYPE OF EDUCATIONAL ACTIVITY	D	
АМВІТ	10507-A scelta dello studente	
CODE	06313	
SCIENTIFIC SECTOR(S)	ICAR/08	
HEAD PROFESSOR(S)	PALIZZOLO LUIGI Professore Associato Univ. di PALERMO	
OTHER PROFESSOR(S)		
CREDITS	6	
INDIVIDUAL STUDY (Hrs)	102	
COURSE ACTIVITY (Hrs)	48	
PROPAEDEUTICAL SUBJECTS		
MUTUALIZATION		
YEAR	3	
TERM (SEMESTER)	2° semester	
ATTENDANCE	Not mandatory	
EVALUATION	Out of 30	
TEACHER OFFICE HOURS	PALIZZOLO LUIGI	
	Thursday 10:00 12:00	

DOCENTE: Prof. LUIGI PALIZZOLO	
PREREQUISITES	Knowledge of the following concepts and/or subjects: centroid and moments of inertia, static and kinematic theory for rigid and deformable systems; constitutive behaviour of materials and structures; virtual work principle, generalized stress distribution.
LEARNING OUTCOMES	Knowledge and understanding skills: aim of the course is the knowledge of the solid and structure mechanics and the comprehension of the structural conception of the more utilized structures for architectural constructions. Ability to apply knowledge and understanding: the knowledge of the structural mechanics and the comprehension of the structural conception must produce the ability for dimensioning and verifying structural systems. It represents a fundamental cultural and professional baggage in order to knowingly perform design and/or restoration of architectural artifacts. Autonomy of judgment: students must be able to associate a suitable structural model at each analyzed architectural artifact. Communicative skills: students must be able to expose the results of their work with Logical rigor and language properties. Learning ability: students must be able to indipendently improve their knowledge.
ASSESSMENT METHODS	The assessment takes place through written tests and oral discussion. An indispensable condition for having a sufficient evaluation is to show elementary knowledge of the topics covered in the course and to know their possible practical applications. The evaluation between 18/30 and 21/30 will be assigned to students who show at least an elementary knowledge of the topics covered in the course and the possible practical applications. The attribution of a grade in this interval is a function of the demonstrated mastery and the property of language. The evaluation between 22/30 and 24/30 will be assigned to students who show a fair knowledge of the topics covered in the course and are able to manage simple practical applications. The attribution of a grade in this interval is a function of the demonstrated mastery and the property of language. The assessment between 25/30 and 27/30 will be awarded to students who show a good knowledge of the topics covered in the course and are able to manage complex practical applications. The attribution of a grade in this interval is a function of the demonstrated mastery and the property of language. The assessment between 25/30 and 27/30 will be awarded to students who show a good knowledge of the topics covered in the course and are able to manage complex practical applications. The attribution of a grade in this interval is a function of the demonstrated mastery and the property of language. The evaluation between 28/30 and 30/30 (with possible laude) will be assigned to students who show excellent knowledge of the topics covered in the course, are able to manage complex practical applications and show particular scientific maturity. The attribution of a grade in this interval is a function of the demonstrated mastery and the property of language.
EDUCATIONAL OBJECTIVES	Understanding of the structural behaviour of the most usual structures for civil and industrial buildings and related analysis and design.
TEACHING METHODS	Lecture hours and exercise (also numeric) sessions
SUGGESTED BIBLIOGRAPHY	 Benvenuto E., La Scienza delle Costruzioni e il suo sviluppo storico, Sansoni, Firenze, 1981. Giambanco F., Lezioni di Statica, D. Flaccovio, Palermo, 1999. ISBN 8877582294. Viola E., Lezioni di Scienza delle Costruzioni, Pitagora, Bologna, 2003. ISBN 8837113412. Viola E., Esercitazioni di Scienza delle Costruzioni, Vol. I,II,III, Pitagora, Bologna, 1985. ISBN 8837103565. Casini P., Vasta M., Scienza delle Costruzioni, Citta' Studi edizioni, 2019. ISBN 9788825174274

SYLLABUS

Hrs	Frontal teaching
4	Analysis methods for continuous bodies: 3D bodies, the elastic analysis problem, displacement and force method; continuous beams, close form of the displacement method.
4	Principle of virtual work. Theorem of Clapeyron, Betti, Maxwell, computation of displacements through the virtual work.
10	Analysis methods for discrete structures: displacement and force method for trusses and frames.
4	Buckling analysis of rigid and deformable beams, critical buckling force, Euler buckling stress.
Hrs	Practice
6	Displacement method for continuous elastic beams.
6	Determination of displacements and rotations of frame structure sections.
14	Displacement and force method. Applications for trusses and frames.