

UNIVERSITÀ DEGLI STUDI DI PALERMO

DEPARTMENT	Matematica e Informatica
ACADEMIC YEAR	2021/2022
BACHELOR'S DEGREE (BSC)	COMPUTER SCIENCE
SUBJECT	THEORETICAL COMPUTER SCIENCE
TYPE OF EDUCATIONAL ACTIVITY	В
AMBIT	50166-Discipline Informatiche
CODE	16671
SCIENTIFIC SECTOR(S)	INF/01
HEAD PROFESSOR(S)	CASTIGLIONE Ricercatore Univ. di PALERMO GIUSEPPA
OTHER PROFESSOR(S)	
CREDITS	9
INDIVIDUAL STUDY (Hrs)	153
COURSE ACTIVITY (Hrs)	72
PROPAEDEUTICAL SUBJECTS	05880 - PROGRAMMING AND LABORATORY - INTEGRATED COURSE
MUTUALIZATION	
YEAR	2
TERM (SEMESTER)	1° semester
ATTENDANCE	Not mandatory
EVALUATION	Out of 30
TEACHER OFFICE HOURS	CASTIGLIONE GIUSEPPA
	Tuesday 14:00 15:00 Dipartimento di Matematica e Informatica. Stanza 209 secondo piano.
	Thursday 14:00 15:00 Dipartimento di Matematica e Informatica. Stanza 209 secondo piano.

DOCENTE: Prof.ssa GIUSEPPA CASTIGLIONE

ASSESSMENT METHODS Theory of computability with p Finite state automate, regular e abstraction, systems model understand the clear distinctive know the existence of problem know the existence of problem applying knowledge and under Ability to apply the acquired ability to apply the acquired Design a deterministic finite st an engineering firm and ge language. To be able to read and unders To use the technical language Making judgments To be able to assess the re contextualize the theoretical languages and theory of comp Communication To use clear and mathemat automate theory of comp Communication To use clear and mathemat To use clear and strengtic Lifelong learning skills Ability to upgrade with the coil anguage and present results to a grou reagarding automata and regula row as strengtic Lifelong learning skills Ability to upgrade with the coil and congraditized i row of 30 to 5/30 and is passe written test lasts 1 and regarding automata and regula from or 30 to 5/30 and is passe written test lasts 1 and reqared strences to the recommende <th>al logic, discrete mathematics, set theory.</th>	al logic, discrete mathematics, set theory.
oral exam. The intermediate test lasts 1 at regarding automata and regula from 0/30 to 5/30 and is passed written test lasts 2 hours and c passed intermediate test). Each exercise will have a ratim of the intermediate test. The te The oral exam consists of three reference to the recommended (slides, handouts, exercises wi acquired knowledge, understat language. The minimum rating will be ach the student will know the basic this threshold, the examination proportional to language skills, the ability to apply and connec: In particular, there are four eva 18-21/30 the student outlines t language, solves simple problem concepts 22-24/30 the student exposes is solves simple problems indeped 25-277/30 the student exposes is is able to apply the concepts to with support. 28-30/30 the student exposes is able to apply the concepts to a autonomously. The laud will be given to stude theorems proposed. The assessment is carried out of the two tests (intermidiate +	ng of the Theory of Automata, Formal Languages and particular attention to their mathematical models: expressions and grammars. Ability of formalization, eling and analysis of complex problems. To tion between syntactic and semantic aspects. To ems not solvable or "difficult" solvable problems, in urces, and therefore their classification into classes erstanding d knowledge to the construction of automata and tion fields. state machine that accepts a specified language for enerates a regular expression to represent the erstand the basic aspects of the specialist literature. e of the discipline. relevance of the topics of the discipline, and to al aspects of the theory of automata, formal putability in various application areas. atically rigorous exposition of the issues of the guages and theory of computability even to a non- now mathematical methods and results relate to nents. Apply rules of inference to construct proofs oup of professionals, appropriate proofs, or logical c problem.
× ×	optional for the students) a final written test and an and half hours and consists of three exercises lar expressions. Each exercise will have a rating sed with a total score of at least 9/30. The final consists of six exercises (three in the case of ing from 0/30 to 5/30 that will be added to the score test is passed with a total score of at least 18/30. ree or more questions on topics of the course with ed book and materials provided during the lectures with solutions). The test has the aim to evaluate the anding of the topics, and the acquisition of specific chieved if the written test reachs the rate 18/30 and ic concepts and will be able to expose them. Below on will be insufficient. The valuation rates are s, correct and detailed exposition of the topics and ect the concepts. valuation levels of the oral test: a the essential aspects of arguments with simple olems only with support, contextualises the basic s all aspects of the topics with proper language, to all the proposed problems, contextualises only s all aspects of the topics with proper language, is all the proposed problems, contextualises only s all aspects of the topics with proper language, is all the proposed problems, contextualises only us the proposed problems, contextualises only s all aspects of the topics with proper language, is all the proposed problems, contextualises only to all the proposed problems, contextualises only s all aspects of the topics with proper language, is all the proposed problems, contextualises only to all the proposed problems, contextualises only to all the proposed problems, contextualises only to thirty and will be the average of the evaluations
deterministic models. Ability to example, grammars and auton deterministic And non-determin	ower of finite state automata and the generative ars. Relations between deterministic and non- to convert a formalism to another equivalent: for omata, automata and regular expressions, ninistic automata. To be able to design automata es. To know how to design grammars that generate

	fixed languages. To know how to use automata and grammars in designing algorithms. Learn the use of automata and grammars as a model in several important applications for example, compilers, software design, digital circuits, software for large collections of texts and for industrial applications.
TEACHING METHODS	Lectures
	J. E. Hopcroft, R. Motwani, J. D. Ullman, Automi, Linguaggi e Calcolabilita, Addison-wesley (PearsonEducation Italia) III edizione 2009.

SYLLABUS

Hrs	Frontal teaching
6	Finite State Automata Motivations, applications and informal description. The central concepts of theory of automata. Definition of deterministic finite state automaton (DFA). Automata recognizers. Representation of a DFA graph of states and transitions table. Non-deterministic finite state automata (NFA). Equivalence of DFA and NFA. The "subset construction". Discussion on "state complexity" of DFA and NFA. Applications to text searches. Automata with epsilon-transitions. Elimination of epsilon-transitions.
6	Regular expressions of regular languages. Equivalence between regular languages and languages recognized by DFA (Kleene's Theorem). Algorithm of elimination of states to convert an automaton in a regular expression. Berry and Sethi algorithm to convert an expression to an automaton.
6	Closure of regular languages with respect to reverse, and Boolean operations. The "pumping lemma" for regular languages. Applications of the pumping lemma. Decision problems for regular languages: equivalence, emptyness and inclusion.
6	Equivalence of automata. Decision problem of the equivalence of two DFA. Minimization of deterministic automata using classical minimization algorithms. The relation of indistinguishability of states. Reduced automaton. Equivalence between reduced automaton and minimal automaton. Myhill-Nerode Theorem. Uniqueness of the minimal deterministic automaton.
6	Grammars and context-free languages (CF) Motivations and informal description. Definition of grammar. Derivations of grammars. Language generated by a grammar. The Chomsky hierarchy. Grammars and CF-languages. Parse trees. Ambiguity in grammars and languages in CF: ambiguous grammars, elimination of ambiguity, inherent ambiguity. Some applications of context-free grammars.
6	Push down automata. Accepted language. Equivalence between push down automata and context-free grammars.
6	Normal forms. Chomsky normal form. Pumping lemma for CF. Applications of the pumping lemma. Closure properties of the CF -languages. Decision problems for the CF languages.
6	Brief introduction to the theory of computability. The Turing machine. Functions computed by a Turing machine. Languages recognized by a Turing machine. The Church-Turing thesis.
8	The universal Turing machine. Existence of non-computable functions. The halting problem for a Turing machine. Decidable and undecidable problems. Intractable problems. P vs. NP. NP-complete problems. Special models of Turing machines. Chomsky hierarchy and decidability.
4	Software tools for the manipulation of automata. Determination, minimization of automata with Jflap.
4	Software tools for the manipulation of regular expressions.
4	Software tools for the manipulation of grammars. Derivation trees with Jflap.
4	Pumping lemma for context-free languages with Jflap.