

UNIVERSITÀ DEGLI STUDI DI PALERMO

DEPARTMENT	Ingegneria
ACADEMIC YEAR	2020/2021
MASTER'S DEGREE (MSC)	COMPUTER ENGINEERING
SUBJECT	ROBOTICS
TYPE OF EDUCATIONAL ACTIVITY	В
АМВІТ	50369-Ingegneria informatica
CODE	06292
SCIENTIFIC SECTOR(S)	ING-INF/05
HEAD PROFESSOR(S)	CHELLA ANTONIO Professore Ordinario Univ. di PALERMO
OTHER PROFESSOR(S)	
CREDITS	12
INDIVIDUAL STUDY (Hrs)	216
COURSE ACTIVITY (Hrs)	84
PROPAEDEUTICAL SUBJECTS	
MUTUALIZATION	
YEAR	2
TERM (SEMESTER)	1° semester
ATTENDANCE	Not mandatory
EVALUATION	Out of 30
TEACHER OFFICE HOURS	CHELLA ANTONIO
	Monday 09:00 11:00 DICGIM, edificio 6, III piano

DOCENTE: Prof. ANTONIO CHELLA

PREREQUISITES	- Algorithms and data structures; - Operating systems;
	- C and Java Programming;
	- Automatic control systems,
	A thick intelligence (suggested).
	- Objective 1: Knowledge and understanding
	The student will acquire the theoretical knowledge necessary to solve the
	problems related to the design and implementation of autonomous robots and
	the methodologies to the robot performance analysis. The student will thus
	current research Finally the class will discuss ethical and societal aspects of
	autonomous robotics. The course will include lectures; class discussions of case
	studies; seminars and panels.
	- Objective 2: Applying knowledge and understanding
	I ne student will acquire the practical capabilities necessary to design and implement autonomous robots. He/she will be able to create robotic
	architectures, to identify the problems, to formulate algorithms, to implement and
	evaluate the performances of the proposed solutions. The course will include
	sessions in the robotics lab or autonomously, by employing the robot simulator
	and the robots NAO and PEPPER.
	The student will acquire the necessary methodologies to implement and
	evaluate robot architectures not previously discussed in the case studies by
	integrating all the notions obtained during the course. He/she will be able to
	analyze problem data at disposal, even if limited and incomplete, and to propose
	robot design solutions tailored to the problem at hand. The student will be able
	evaluate the performance of the solutions also by ethical and societal aspects
	The course will include analysis and discussion of case studies; lectures and
	group sessions; lectures on ethical, economic and social aspects of robotics;
	class discussions and presentations performed by students team concerning
	Γ - Objective Δ^{1} Communication skills
	The student will be able to work in a team and to communicate with competence
	and correctness of language the issues related to the design, implementation,
	and evaluation of autonomous robots.
	I he course will include team sessions in the robotics lab on the design and limplementations of autonomous robots; presentations and class discussions by
	the student's teams.
	- Objective 5: Learning skills
	The student will be able to autonomously learn and study specific difficult
	problems related to autonomous robotics by the literature of the field.
	research topics of autonomous robots
ASSESSMENT METHODS	Assessment methods will focus on the evaluation of learning outcomes of the
	course (see below) according to the Dublin descriptors. The final grade will be
	from 18/30 to 30/30 cum laude.
	- Assessment of Objective 1: Knowledge and understanding
	topics of the svllabus. Objective 1 will count as 15% of the final grade
	- Assessment of Objective 2: Applying knowledge and understanding
	This objective will be assessed by an oral discussion of the robot case studies
	analyzed by the student during team sessions in the lab. Objective 2 will count
	As 15% Of the linal grade.
	This objective will be assessed by a discussion of an essay, written at home and
	in the lab, by the student together with his/her student team. The article will
	concern the design and implementation of a robot performing assigned tasks. A
	live demo of the operating robot will have to be shown by the student team. In
	and implementation choices performed by the student team. Objective 3 will
	count as 30% of the final grade.
	- Assessment of Objective 4: Communication skills
	I his objective will be assessed by the oral discussions concerning Objectives
	will count as 10% of the final grade
	- Assessment of Objective 5: Learning skills
	This objective will be assessed using the discussion of the essay described in
	Objective 3. In particular, Objective 5 will be evaluated by discussing, in
	particular, the theories and techniques autonomously learned by the student
	30% of the final grade.
EDUCATIONAL OBJECTIVES	Educational objectives are in agreement with the ACM/IEEE CS 2013 Body of
	Knowledge and they cover all or parts of the following Knowledge Units.

	Knowledge Area: Platform Based Development Knowledge Unit: Industrial Platforms Topics Covered: - Robotic software and its architecture Knowledge Area: Intelligent Systems Knowledge Unit: Robotics Topics Covered: - Overview: problems and progress: • State-of-the-art robot systems, including their sensors and an overview of their sensor processing • Robot control architectures, e.g., deliberative vs. reactive control and Braitenberg vehicles • World modeling and world models • Inherent uncertainty in sensing and in control - Configuration space and environmental maps - Interpreting uncertain sensor data - Localizing and mapping - Navigation and control - Motion planning Knowledge Area: Intelligent Systems Knowledge Vnit: Advanced Representation and Reasoning Topics Covered: - Reasoning about action and change (e.g., situation and event calculus) - Planning: • Patrial and totally ordered planning • Mobile agent/Multi-agent planning Knowledge Area: Intelligent Systems Knowledge Unit: Advanced Machine Learning Topics Covered: - Supervised learning: • Learning neural networks • Support vector machines (SVMs) - Unsupervised Learning and clustering: • Self-organizing maps - Reinforcement learning: • Exploration vs. exploitation trade-off • Markov decision processes • Value and policy iteration Knowledge Area: Information Assurance and Security Knowledge Unit: • Gundational Concepts in Security Topics Covered: - Concept of trust and trustworthiness - Ethics (responsible disclosure)
TEACHING METHODS	The overall format of the course is: - Lectures - Lab sessions - Discussion classes
SUGGESTED BIBLIOGRAPHY	 Arkin, R. C. (1998). Behavior-based robotics. Cambridge, Mass., MIT Press. The book covers the following arguments in details: Behavior-based robotics; Subsumption architectures. Motor schemas. Behavioral coordination. Thrun, S., Burgard, W. and Fox, D. (2005). Probabilistic Robotics. Cambridge, Mass., MIT Press. The book covers the following arguments in details: uncertain sensor data, probabilistic model of actuators, localization and mapping, SLAM. Latombe, JC. (1991). Robot motion planning. Boston, Kluwer Academic Publishers. The book covers the following arguments in details: Configuration space. Motion planning. Cangelosi, A. and Schlesinger (2015). Developmental Robotics. Cambridge, Mass., MIT Press.

SYLLABUS

Hrs	Frontal teaching
3	Overview: problems and progress
3	Robot software and architectures
3	Behavior-based robotics
6	Subsumption architectures. Motor schemas. Behavioral coordination
6	Sensors. Landmarks and triangulation
3	Locomotion. Kinematics of a mobile robot
6	Configuration space. Motion planning
3	Symbolic planning. STRIPS.
6	Neural networks for control: supervised, unsupervised, reinforcement learning
6	Artificial vision systems
3	Interpreting uncertain sensor data
3	Probabilistic model of actuators
9	Kalman filter

SYLLABUS

Hrs	Frontal teaching
3	Histogram filter
3	Particle filter
2	Ethical aspects of robotics
2	Trustworthy human-robot interactions
Hrs	Practice
3	Introduction to the NAO robot
3	Sensors and kinematics
2	Motion planning
2	Probabilistic model of sensors and actuators
4	Software architectures for robotics