UNIVERSITÀ DEGLI STUDI DI PALERMO

DEPARTMENT	Ingegneria
ACADEMIC YEAR	$2019 / 2020$
BACHELOR'S DEGREE (BSC)	BIOMEDICAL ENGINEERING
INTEGRATED COURSE	MATHEMATICAL ANALYSIS - INTEGRATED COURSE
CODE	19109
MODULES	Yes
NUMBER OF MODULES	2
SCIENTIFIC SECTOR(S)	MAT/05
HEAD PROFESSOR(S)	VETRO CALOGERO Professore Associato Univ. di PALERMO
OTHER PROFESSOR(S)	VETRO CALOGERO Professore Associato Univ. di PALERMO
CREDITS	12
PROPAEDEUTICAL SUBJECTS	
MUTUALIZATION	1
YEAR	Annual
TERM (SEMESTER)	Not mandatory
ATTENDANCE	Out of 30
EVALUATION	VETRO CALOGERO TEACHER OFFICE HOURS

PREREQUISITES	Knowledge of numerical sets. Powers and their properties, logarithms and their properties. Fundamentals of algebra. Solving equations and inequalities of the first and second degree. Elements of analytic geometry in the plane. Fundamentals of trigonometry.
LEARNING OUTCOMES	KNOWLEDGE AND UNDERSTANDING: The student must acquire the knowledge of the language, the formalism and the basic theoretical concepts and methods of mathematical analysis. APPLYING KNOWLEDGE AND UNDERSTANDING: The student must acquire the ability of applying the techniques presented in the course in various contexts in which the mathematical analysis is required, both from the point of view of representation of mathematical models and from that of pure computation. MAKING JUDGEMENT: The student must be able to analyze and formalize a problem and identify the mathematical tools and strategies to solve it. COMMUNICATION SKILL: The student must be able to express with logical rigor, with properties of language and competence the concepts and the topics of the discipline. The student must be able to write the solution of problems in a rigorous and correct way, both in form and in substance. LEARNING SKILLS: The student must be able of using independently the acquired knowledge and must have the ability of developing advanced mathematical concepts through independent consultation of scientific texts.
ASSESSMENT METHODS	EXAMINATION: Final exam consists of a written test and an oral test. The written exam and the oral exam are evaluated out of $30 / 30$ (each one is passed with a grade not less than 18/30) and the final vote is the average of the marks obtained in each test. The written test requires the resolution of $3 / 4$ exercises for each module concerning the main topics covered in the course. The written test is intended to evaluate the computing capacity, the degree of knowledge of the concepts presented in the course and the ability of the students to apply them independently. The oral test consists of the discussion of the topics of the written test and of an interview on the main results presented in the course. The oral test will also allow to evaluate the acquired properties of language and reasoning skills. INTERMEDIATE WRITTEN TESTS: The written test of the exam can be replaced, only in the case of students attending the course, by two written tests that will take place at the end of each module. Precisely, each written test will be evaluated out of $15 / 15$. If each test has a score of not less than 7.5 / 15 and the average of the two evaluations is not less than 18/30 the student can directly support the oral exam of Mathematical Analysis, without further written exam, for a single appeal of the summer session. If the written test of a single module with a score of not less than 9/15 is passed, it is possible to pass the written test of the other module during one of the scheduled dates of exams of the summer session. If the student does not take or does not pass the written tests of the two modules, it is implicit that he will be able to take the full examination of the course (written test and oral test) during any sheduled date of exams. FINAL ASSESSMENT: The final assessment, properly graded, will be made on the basis of the following criteria: Rating: Excellent: 30-30 cum laude. Outcome: in-depth knowledge of the topics, excellent properties of language and analytical skill, the student is able to apply independently the knowledge to solve the proposed problems. Rating: Very good: 26-29. Outcome: in-depth knowledge of the topics, good mathematical language; the student is able to apply the knowledge to solve the proposed problems. Rating: Good. Rating: 24-25. Outcome: good knowledge of the main topics and properties of language, the student has a fairly good capacity to apply the knowledge to solve the proposed exercises. Rating: Satisfactory. Rating: 21-23. Outcome: basic knowledge of the main topics and sufficient command of the language, the student has a limited capacity of apply the knowledge independently, is able to solve basic exercises. Rating: Sufficient. Rating: 18-20. Outcome: acceptable knowledge of the proposed topics and acceptable command of the language, the student has a limited capacity of apply the knowledge independently, is able to solve standard exercises. Rating: Unsufficient: <18. Outcome: inadequate knowledge of the contents.
TEACHING METHODS	The course consists of two modules, Mathematical Analysis I (6 credits) and Mathematical Analysis II (6 credits), which take place respectively in the first and second semester of the first year of the degree course. Didactic activity is based

	on lectures and exercises delivered in classroom. At the end of each module there will be a written test, not compulsory but recommended, reserved to students attending the module, based on exercises similar to that proposed during the course, whose positive outcome can replace, in whole or in part, the written test of the final exam.

SYLLABUS

Hrs	Frontal teaching
4	Numerical sets. Basic trigonometry. Complex numbers.
4	Real sequences.
4	Real-valued functions of a real variable. Limits and continuity.
4	Differential calculus: derivative of real-valued functions of a real variable. Differentiation Rules: sum, product, quotient, chain rules, derivatives of the inverse functions.
4	Mean Value Theorem. L'Hôpital's Rule. Taylor Polynomials.
6	Graph of a function.
4	Integration: Riemann sums and the definite integral, antiderivatives and indefinite integrals, immediate and quasi-immediate integrals, the Fundamental Theorem of Calculus.
6	Basic techniques of integration: substitution, integration by parts. Applications. Improper integrals.
Hrs	Complex numbers. Real sequences.
6	Real-valued functions of a real variable. Differential calculus: derivative of real-valued functions of a real variable.
6	Taylor Polynomials. Graph of a function.
6	Calculate integrals, areas and volumes of rotation solids. Calculate generalized integrals.
6	

MODULE	
MATHEMATICAL ANALYSIS - MODULE 2	
Prof. CALOGERO VETRO	

SYLLABUS

Hrs	Frontal teaching
4	Ordinary differential equations (ODE). General integral of an ODE. Cauchy problems.
4	Separable variable differential equations. Some real models.
4	First and second-order linear differential equations. Models.
4	Differential calculus for functions of two variables. Topology in R^2. Graphs and level sets. Limits and continuity for functions of two variables. 4
6	Partial derivatives. Differentiability.
4	Unconstrained and constrained optimization. Double integrals.
6	Numerical series. Sequences and series of functions. Fourier series.
Hrs	
4	Exercises and complements on the ordinary differential equations.
4	Exercises and complements on the first and second-order linear differential equations.
4	Exercises and complements on the differential calculus for functions of two variables.
4	Exercises and complements on unconstrained and constrained optimization, double integrals.
4	Exercises and complements on numerical series, sequences and series of functions.
4	Exercises and complements on power series and MacLaurin series.

