

DEPARTMENT Matematica e Informatica

ACADEMIC YEAR 2019/2020

BACHELOR'S DEGREE (BSC) COMPUTER SCIENCE

INTEGRATED COURSE PROGRAMMING AND LABORATORY - INTEGRATED COURSE

CODE 05880

MODULES Yes

NUMBER OF MODULES 2

SCIENTIFIC SECTOR(S) INF/01

HEAD PROFESSOR(S) ROCCHESSO DAVIDE Professore Ordinario Univ. di PALERMO

OTHER PROFESSOR(S) LO BOSCO GIOSUE' Professore Associato Univ. di PALERMO
ROCCHESSO DAVIDE Professore Ordinario Univ. di PALERMO

CREDITS 12

PROPAEDEUTICAL SUBJECTS
MUTUALIZATION
YEAR 1

TERM (SEMESTER) Annual

ATTENDANCE Not mandatory

EVALUATION Out of 30

TEACHER OFFICE HOURS LO BOSCO GIOSUE'
Tuesday 15:00 17:00 Ufficio al secondo piano del Dipartimento di Matematica e

Informatica, Stanza 203. E' suggerita la prenotazione

ROCCHESSO DAVIDE
Thursday 11:00 13:00 Office at first floor of Department of Mathematics and

Computer Science. Room 110. Booking is requested. /
Ufficio al primo piano del Dipartimento di Matematica e
Informatica, Stanza 110. E' suggerita la prenotazione.

DOCENTE: Prof. DAVIDE ROCCHESSO
PREREQUISITES No prerequisites.

LEARNING OUTCOMES Knowledge and understanding: acquisition of the fundamentals of structured
programming; elementary static and dynamic data structures; simple
fundamental algorithms of searching and sorting; recursive definition of
solutions; familiarity with the fundamental constructs of C programming
language.

Ability to apply knowledge and understanding: ability to tackle simple
computational problems by choosing appropriate data structures and algorithms;
ability to code in C language; ability to validate, by writing simple programs, the
theoretical notions; ability to understand the errors raised by the C compiler or at
runtime; ability to decompose complex problems in computationally simpler
problems.

Critical awareness: ability to choose the most appropriate parameter passing
method; ability to compare two simple programs in terms of computational
efficiency and behavioral invariance; ability to find an efficient algorithmic
solution to simple problems.

Communication skills: ability to explain the fundamentals of programming
languages and to communicate imperative programs.

Learning skills: ability to approach a variety of programming languages and to
put the acquired skills at work in concrete problems.

ASSESSMENT METHODS The exam is composed by a written test, a practical test, and a brief interview.
The written test is divided into two parts, each corresponding to one of the two
modules. It is made of ten multiple-choice quizzes and of two programming
exercises. Each answer is assigned 2 points (correct), 0 points (no answer), or
-0.5 points (wrong answer). Programming exercises are assigned up to 6 points
each. The written test is considered to be passed if it is scored 15 or more.
The practical test is the development of a simple program concerning lists,
arrays or file manipulation. The program is evaluated by verifying that it runs and
solves the problem, as well as by analyzing the code. It is followed by a brief
interview with questions aimed at assessing the knowledge of the main
programming notions. The whole practical/oral test is evaluated as a whole, out
of 30.
The final score is obtained by combining the scores of the written test and of
the practical/oral test.
The score ranges are qualified as follows:
18-20: knowledge of the subject and programming skills are sufficient;
21-23: knowledge of the subject and programming skills are fair;
24-25: knowledge of the subject and programming skills are good;
26-27: knowledge of the subject and programming skills are very good;
28-30: knowledge of the subject and programming skills are excellent.
The "cum laude" can be assigned to those students who have passed the
written test with score 26 or higher, and who master the subject and show
excellent programming skills, as demonstrated in the practical test and in the
interview.
An intermediate test is provided at the end of the first module, with a structure
similar to the written tests of regular sessions. The student who passes the
intermediate test may skip the first part of the written test in the regular session.

TEACHING METHODS Lectures in the classroom and in the laboratory.

MODULE
ABSTRACT DATA STRUCTURES

Prof. DAVIDE ROCCHESSO
SUGGESTED BIBLIOGRAPHY
P.J. Deitel and H.M. Deitel. Il linguaggio C: Fondamenti e tecniche di programmazione, 7/Ed. Pearson, 2016.
(programmazione strutturata in C / structured programming in C)
R. Sedgewick. Algoritmi in C, 4/Ed. Pearson, 2015. (strutture astratte di dati / abstract data structures)

AMBIT 50168-Formazione informatica di base

INDIVIDUAL STUDY (Hrs) 94

COURSE ACTIVITY (Hrs) 56

EDUCATIONAL OBJECTIVES OF THE MODULE
The module aims to provide students with the theoretical and practical tools for the design of iterative and recursive strategies
for solving problems. The course focuses on dynamic memory management and on the construction of dynamic data
structures, with specific attention to the use of pointers. Recursive and iterative functions are implemented, in different
versions and with varying complexity, for the construction and management of data structures, thus allowing the student to
familiarise with programming, algorithms, and computational complexity. The construction of data structures at increasing
levels of abstraction, is presented and exemplified.
One third of the lecture hours takes place in a classroom equipped with computers, in such a way that the students can
directly implement the examples and the exercises proposed by the instructor. This teaching method is suitable for an
effective transmission of theoretical and practical skills.

SYLLABUS
Hrs Frontal teaching

5 Recursion. Examples of recursive functions: factorial of a number, sum of consecutive integers,
Fibonacci numbers. Comparison between iteration and recursion. Tail recursion. Introduction to
dynamic programming. Recursive functions on arrays: recursive binary search and mergesort
algorithm. Computational comparison between mergesort and elementary sorts.

5 Examples of recursive strategies to solve computational problems on arrays and strings.
Debugging and profiling C programs.
Pointers and dynamic objects. Memory allocation and deallocation. The principle of least privilege.

5 Function pointers. Examples: bidirectional sorting, menus.
Structures and derived data types. Operations on structures. Stuctures and pointers. Structures
and functions.
Dynamic programming: The 0-1 knapsack problem, most profitable path between NW and SE in
a matrix. Unions and space sharing.

5 Nodes for dynamic structures. Linked lists. Example: sorted list of characters, insertion and
deletion. Comparison between arrays and lists.
Examples: recursive inversion of a linked list, search in a linked list. Merging two sorted lists.
Mergesort on linked lists.
Bottom-up mergesort on arrays. Bottom-up mergesort on linked lists. Natural mergesort.

5 Stack data structure and implementation using a linked list.
Queue data structure and implementation using a linked list.
Abstract Data Type (ADT): need, features, and definition. The concept of type abstraction and its
realization. The stack as an ADT: implementation with linked list, array, or resizable array
(dynamic reallocation). Information hiding using the static qualifier.

5 The queue as an ADT: implementation with linked list, array, or resizable array. Circular buffer
and buffer resizing. Bottom-up mergesort with a queue of lists.
Postfix expression evaluation using a stack. Compilation from multiples source files and use of
the pre-processor. Static libraries.

5 Bitwise operations. Bit fields. Enumeration constants and enumerated types. Example: Extraction
and representation of the knapsack content.
Trees and Binary Search Tree (BST) ADT. BST insertion. Tree traversals. Searching in a BST.
Printing a tree. Deletion in a BST.

5 Binary random access files. Queue ADT based on binary random access files.
First-class abstract data type (supporting multiple instances). Example: complex number ADT.
The queue as a first-class ADT. Systems of queues. The stack as a first-class ADT. Example:
infix complex-number expression evaluator. ADT polynomial.

Hrs Workshops
2 Examples of iterative and recursive functions. Measuring execution time with time.h. Profiling with

gprof. Converting the binary search from iterative to recursive form.

2 Recursive mergesort. Switching to insertion sort for small sizes. Measuring performance.
Exercises: ordered lists of characters; recursively printing an inverted list; recursive search in a
list; fusion of sorted lists.

2 Exercises: deck of cards; recursive knapsack problem; dynamic programming for the recursive
knapsack problem; iterative bottom-up knapsack problem

2 List-based implementation of a stack. List-based implementation of a queue. Top-down
mergesort with lists. Bottom-up natural mergesort with lists and auxiliary array. Measuring
performance.

2 List-based Stack ADT. Array-based Stack ADT. Resizing an array-based stack. Realloc. Verifying
element presence in a stack. Abstracting the input-output from the base type.

2 Queue ADT with lists, arrays, and resizable arrays. Circular buffer. List-based mergesort with
auxiliary queue. Stability of mergesort. Postfix expression evaluator.

2 Bitwise operations. Printing the bits of an unsigned int. Examples of logic operations and bit
shifting. Example: giving back the knapsack content. Bit fields. Enumeration constants.

2 Binary trees. Binary Search Trees (BST). Visits: pre-order, post-order. Exercise: BST search,
complexity and performance. Exercise: printing a BST. Exercise: level-order visit and its
realization with Queue ADT. BST deletion. ADT polynomial. Infix expressions on complex
numbers.

MODULE
STRUCTURED C PROGRAMMING

Prof. GIOSUE' LO BOSCO
SUGGESTED BIBLIOGRAPHY
P. Deitel, H. Deitel. Il linguaggio C. Fondamenti e tecniche di programmazione. Pearson.
Per Consulazione:
K. N. King. Programmazione in C. Apogeo.
A. Bellini, A.Guidi. Linguaggio C - guida alla programmazione. Mc Graw Hill.

AMBIT 50168-Formazione informatica di base

INDIVIDUAL STUDY (Hrs) 94

COURSE ACTIVITY (Hrs) 56

EDUCATIONAL OBJECTIVES OF THE MODULE
The module aims to provide students with the theoretical and practical tools for designing a computer program in its
fundamental aspects: the representation of data in structures and the formulation of simple algorithms that adopts the
fundamental control, selection and iteration structures. The used programming language is C, due to its diffusion and its
characteristic of being preliminary to most of the modern programming languages. One-third of the expected hours of lectures
will be held in a classroom equipped with computers so that students can directly carry out examples and exercises proposed
by the teacher. This teaching method allows the transfer of theoretical skills into practical examples of implementation.

SYLLABUS
Hrs Frontal teaching

4 Introduction to the Programming course. The architecture of a computer according to Von
Neumann. Representation of information. The binary representation of integers, relative integers,
reals, characters. The ASCII code. The strings.

4 Base conversion for the representation of integers. Definition of Algorithm. Examples of
algorithms. Flowcharts, representation of an algorithm through a flowchart. Overview of the
computational complexity of an algorithm.

4 The C language. Structure of a C program. Compilation, linking, preprocessor. Basic libraries.
Identifiers. The constants and the variables. Declaration and assignment. The integer type, float
and double. The type char. Basic Input / output functions.

6 Operators in C: arithmetic, relational, logical, bitwise. Order of priority of the operators. Selection
constructs in C: If, then, else, and switch, case. Macro. Conditional compilation.

4 The iteration constructs in C. The statement "for". The iteration constructs while, do..while.
Equivalence of iteration constructs.

5 Array in C. Static declaration of an array. C strings as static arrays of characters.

5 Pointers. Pointers arithmetic. Dynamic declaration of an array. Stack and Heap. C strings as
dynamic character arrays.

6 Multiple-sized arrays. Static and dynamic declaration of a multidimensional array. Equivalence
between multidimensional and one-dimensional structures and their representation in memory.
The functions in C. The declaration, definition and call of functions. Passing parameters by value
and by address.

2 The files in C. Binary and text files. Functions for reading and writing into a file. Random and
sequential access.

Hrs Workshops
2 Coding in C language of first simple programs with selection constructs. Compilation and linking

with GCC. Using the make and makefiles command.

2 Implementation in C of programs that use iterative constructs.

2 Implementation in C of programs for inserting and displaying a static array. C implementation of
programs to find the length of a string, to compare two strings, to search for a substring.

2 C implementation of programs for inserting and displaying a dynamic array. C implementation of
programs to find the length of a string, to compare two strings, to search for a substring using
character pointers.

3 Implementation in C of programs for the insertion and visualization of static and dynamic multiple-
sized arrays. Implementation in C of the computation of the determinant of a square matrix, by
static and dynamic arrays.

3 Implementation in C language of the sorting algorithms, in particular, Insertion and Selection Sort.
Implementation in C language of the search for an element in unordered and ordered arrays.

2 Implementation in C language of a program to read and write to a textual or binary file.

	LO BOSCO GIOSUE'
	ROCCHESSO DAVIDE
	Prof. DAVIDE ROCCHESSO
	Prof. DAVIDE ROCCHESSO
	1
	Prof. DAVIDE ROCCHESSO

	3
	Prof. DAVIDE ROCCHESSO

	Prof. GIOSUE' LO BOSCO
	1
	Prof. GIOSUE' LO BOSCO

	3
	Prof. GIOSUE' LO BOSCO

