

UNIVERSITÀ DEGLI STUDI DI PALERMO

	Note motion of Information
DEPARTMENT	Matematica e Informatica
ACADEMIC YEAR	2018/2019
MASTER'S DEGREE (MSC)	COMPUTER SCIENCE
SUBJECT	CLOUD AND HIGH PERFORMANCE COMPUTING
TYPE OF EDUCATIONAL ACTIVITY	С
AMBIT	20903-Attività formative affini o integrative
CODE	17389
SCIENTIFIC SECTOR(S)	FIS/05
HEAD PROFESSOR(S)	REALE FABIO Professore Ordinario Univ. di PALERMO
OTHER PROFESSOR(S)	
CREDITS	6
INDIVIDUAL STUDY (Hrs)	102
COURSE ACTIVITY (Hrs)	48
PROPAEDEUTICAL SUBJECTS	
MUTUALIZATION	
YEAR	2
TERM (SEMESTER)	1° semester
ATTENDANCE	Not mandatory
EVALUATION	Out of 30
TEACHER OFFICE HOURS	REALE FABIO
	Tuesday 12:30 14:30 Ufficio, Via Archirafi 36
	Thursday 12:30 14:30 Ufficio, Via Archirafi 36

DOCENTE: Prof. FABIO REALE

DOCENTE: Prof. FABIO REALE	
PREREQUISITES	The prerequisites for profitable learning of Cloud and High Performance Computing and to achieve the objectives which it is intended are a basic knowledge of hardware and software architectures, and of computer science, including C programming language.
LEARNING OUTCOMES	Knowledge and understanding: knowledge and basic mastery on cloud computing topics and numerical high performance computing. Applying knowledge and understanding: Design, implementation and testing of programs of high-performance computing systems. Rating dell'applicabilita`, validity areas, and efficiency of the methods and programs. Making judgments: objective assessment tools Acquisition through validation test programs. Assessment and selection of different solutions and numerical systems according to the problem to be addressed. Communication skills: Acquisition of skills' presentation through answers for extended specific questions asked during practice. clear and founded exposition of the problem to be solved, the assumptions made and the method used in the solution. Learning skills: Capacity' to apply the programming concepts in the practical implementation of large-scale algorithms.
ASSESSMENT METHODS	The evaluation is based on the outcome of the final test, in which the student does a test with open questions on all topics of the course, and then illustrate the results of the parallel computing applications with a multimedia presentation. It assesses the knowledge and mastery of the course topics, and the correct use of language and ability of expression. Grading: 30-30 cum laude: Excellent knowledge of the topics, excellent use of language, good analytical ability, the student is able to apply the knowledge to solve problems proposed 26-29: Good mastery of the subjects, full use of the language, the student is able to apply knowledge to solve problems proposed 24-25: Basic knowledge of the main topics, discrete properties of language, with limited ability to independently apply the knowledge to the solution of the proposed problems 21-23: He/she does not have full mastery of the main issues but he/she has knowledge, satisfactory use of the language, poor ability to independently apply the knowledge acquired 18-20: Minimum basic knowledge of the main topics and the technical language, very little or no ability to independently apply the knowledge acquired Insufficient: He/she does not have an acceptable knowledge of the contents of the topics covered in the course
EDUCATIONAL OBJECTIVES	The course aims to provide students with an overview and application tools on the main topics of Cloud and High Performance Computing appropriate for the master degree in Computer Science.
TEACHING METHODS	The course is half-year long and is divided into two parts, the first on Cloud Computing, the second on High Performance Computing. A preliminary lecture explains the reasons for the arguments. In the first part lectures are held on Cloud Computing foundations, management and services with various examples of solutions offered by today's market. In the second part, lectures are held on the concept, architectures, models, designs and examples of systems and parallel programming, and then it follows applications with guided exercises in an equipped room with MPI parallel programming. The exam consists in compiling a test with open questions on both parts of the course and in presenting the results of the exercises using multimedia. The evaluation is assessed on the basis of both tests.
SUGGESTED BIBLIOGRAPHY	Testi di riferimento/Reference textbooks [Cloud computing] - Rajkumar Buyya, James Broberg, Andrzej Goscinski, Cloud Computing: Principles and Paradigms, John Wiley & Sons, Inc., Hoboken, New Jersey, 2017 [Parallel computing] - Blaise Barney, Introduction to Parallel Computing, https:// computing.llnl.gov/tutorials/parallelcomp/, 2017 Testi di approfondimento/Supplementary textbooks [MPI programming] - Blaise Barney, Message Passing Interface (MPI), https:// computing.llnl.gov/tutorials/mpi/, 2017

SYLLABUS

Hrs	Frontal teaching
2	Introduction: the concept of cloud and high performance computing, the structure of the course, exams, examples on field
3	Cloud computing: foundations; The concept, features and origins, classification and requirements
2	Cloud Computing: Cloud Infrastructure Management; Features of VIM, Hypervisors, Review of VIM
3	Cloud computing: Infrastructure as a Service providers, Platform as a Service providers, cloud containers, topics and challenges of Cloud computing
2	High Performance Computing: overview, concepts and terminology

SYLLABUS

Hrs	Frontal teaching
3	High Performance Computing: architecture and parallel computing models
2	High Performance Computing: Design of parallel programs
3	High Performance Computing: parallel examples
2	Message Passing Interface: generalities, structure and approach, routine management
3	Message Passing Interface: communication routines
2	Message Passing Interface: example with differential equations 2D
3	Message Passing Interface: examples of compilation and running C programs parallel with MPI
3	Message Passing Interface: sequential C program of a time-dependent equation
3	Message Passing Interface: parallelizing C program on time-dependent equation
3	Message Passing Interface: implementation communication between processors with MPI
3	Message Passing Interface: test of parallel program
3	Message Passing Interface: output of parallel program
3	Message Passing Interface: analisys of the results and parallel efficiency