UNIVERSITÀ DEGLI STUDI DI PALERMO

DEPARTMENT	Ingegneria
ACADEMIC YEAR	$2018 / 2019$
BACHELOR'S DEGREE (BSC)	CIVIL AND BUIDING ENGINEERING
SUBJECT	MATHEMATICAL ANALYSIS II
TYPE OF EDUCATIONAL ACTIVITY	A
AMBIT	$50279-m a t e m a t i c a, ~ i n f o r m a t i c a ~ e ~ s t a t i s t i c a ~$
CODE	13712
SCIENTIFIC SECTOR(S)	MAT/05
HEAD PROFESSOR(S)	TRIOLO SALVATORE Professore Associato \quad Univ. di PALERMO
OTHER PROFESSOR(S)	6
CREDITS	96
INDIVIDUAL STUDY (Hrs)	54
COURSE ACTIVITY (Hrs)	13711 - MATHEMATICAL ANALYSIS I
PROPAEDEUTICAL SUBJECTS	MATHEMATICAL ANALYSIS 2 - Corso: INGEGNERIA DELL'INNOVAZIONE PER LE IMPRESE DIGITALI MUTUALIZATION MATHEMATICAL ANALYSIS 2 - Corso: DIGITAL ENTERPRISE INNOVATION ENGINEERING YEAR TERM (SEMESTER) ATTENDANCE EVALUATION TEACHER OFFICE HOURSNomester

PREREQUISITES	Contents of the course of Mathematical Analysis l; matrix algebra, eigenvalues and eigenvectors of a matrix, diagonalization; knowledge of the space R3.
LEARNING OUTCOMES	Knowledge and understanding: The student will learn the differential calculus of more variables, series of functions, Fourier series, multiple integrals, curves in plane and in space. He will recognise e solve some type of differential equations. He will acquire a rigorous method of reasoning and the ability to use the specific language. This knowledge is achieved by participation in lectures and integrative teaching activities in the classroom. The achievement of objectives is verified by the specific tests and final exams. Applying knowledge and understanding: Solve problems of moderate difficulty. Capacity of application of the resolution techniques of the exercises in more general fields of Mathematics. These objectives are achieved using the theory for the resolution of problems of moderate difficulty regarding the topics taught.
TEACHING METHODS	Making judgements: Learners must be able to develop logical arguments with a clear identification of assumptions and conclusions; They must understand mathematical models associated with concrete situations arising from other disciplines and to use these models to facilitate the study of the original situation.
EDUCATIONAL OBJECTIVES	Communication skill: Knowing how to exhibit in the written and oral, with logical rigor, with property of
language and competently ideas, problem-solving methods and the main	
theorems of the course. Discuss asymptotic behavior and the character of	
solutions of a linear differential equation. Know mathematically formalize	
situations of practical interest, in industry or in economics.	

	semester there are a written test (not compulsory), whose positive results can replace in whole or in part the final written test.
SUGGESTED BIBLIOGRAPHY	Pagani, Salsa - Analisi matematica 1 e $2-$ Zanichelli Marcellini - Sbordone, Esercitazioni di Matematica, II volume, parte prima e parte seconda, Liguori M. Bertsch, Dal Passo, Elementi di Analisi Matematica, Aracne

SYLLABUS

Hrs	Frontal teaching
6	Differential equations, Cauchy problem, local existence and uniqueness, regularity of solutions, global existence and uniqueness, continuous dependence of solution from the initial data, integration of equation of first order, linear differential equations, method of variation of constants, linear differential equations with constant coefficients homogeneous and not homogeneous, method of similarity
6	Local inversion theorem, implicit functions, Dini theorem, constrained optimization, Lagrange multipliers,
6	Homogeneous functions, curves and integrals on curves, linear differential forms, forms closed and esact
8	Formulae of Gauss-Green and change of variables, surfaces and integral of surfaces, Stokes formula, divergence theorem and its application

Hrs	Practice
6	Sequences of functions: pointwise and uniform convergence. Exchange of limits; limit and derivative, limit and integral. Series of functions. Power series. Analytic functions, outline of Fourier series,
8	Topology of Rn, limits, continuity, derivability and differentiability of two or more variables, tangent plane, gradient, direction of maximal variation, derivate of second or higher order, Taylor formula for multi-variable function, free optimization, Hessian matrix, critical points. Multiple integrals in normal domains and reduction formula, change of variables, Jacobian Matrix
14	Calculus of limits of functions with two variables, calculus of maximum and minimum for functions with two variables free and with constrain, calculus of length of a curve, work of a vector field, solution of differential equation of first order, second order and higher order with constant coefficients homogeneous and not homogeneous.

