

# UNIVERSITÀ DEGLI STUDI DI PALERMO

| DEPARTMENT              | Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di<br>Eccellenza "G. D'Alessandro" |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------|--|
| ACADEMIC YEAR           | 2018/2019                                                                                                          |  |
| BACHELOR'S DEGREE (BSC) | MIDWIFERY (QUALIFYING FOR PROFESSIONAL PRACTICE)                                                                   |  |
| INTEGRATED COURSE       | PHYSICS AND COMPUTER SCIENCE- INTEGRATED COURSE                                                                    |  |
| CODE                    | 10729                                                                                                              |  |
| MODULES                 | Yes                                                                                                                |  |
| NUMBER OF MODULES       | 2                                                                                                                  |  |
| SCIENTIFIC SECTOR(S)    | FIS/07, INF/01                                                                                                     |  |
| HEAD PROFESSOR(S)       | MICELI MARCO Professore Associato Univ. di PALERMO                                                                 |  |
| OTHER PROFESSOR(S)      | FRANCHINI SILVIA Professore a contratto Univ. di PALERMO<br>GIUSEPPINA                                             |  |
|                         | MICELI MARCO Professore Associato Univ. di PALERMO                                                                 |  |
| CREDITS                 | 7                                                                                                                  |  |
| PROPAEDEUTICAL SUBJECTS |                                                                                                                    |  |
| MUTUALIZATION           |                                                                                                                    |  |
| YEAR                    | 1                                                                                                                  |  |
| TERM (SEMESTER)         | 1° semester                                                                                                        |  |
| ATTENDANCE              | Mandatory                                                                                                          |  |
| EVALUATION              | Out of 30                                                                                                          |  |
| TEACHER OFFICE HOURS    | FRANCHINI SILVIA<br>GIUSEPPINA                                                                                     |  |
|                         | Friday 11:00 12:00 Su appuntamento                                                                                 |  |
|                         | MICELI MARCO                                                                                                       |  |
|                         | Wednesday 14:30 16:30 Dipartimento di Fisica e Chimica, via Archirafi 36 (con prenotazione via email)              |  |
|                         | Thursday 14:30 16:30 Dipartimento di Fisica e Chimica, via Archirafi 36 (con prenotazione via email)               |  |

| PREREQUISITES      | basic knowledge of algebra, geometry, and trigonometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LEARNING OUTCOMES  | Knowledge and understanding: organic knowledge of the fundamental laws of<br>Newtonian mechanics, hydrodynamics, classical thermodynamics and<br>electromagnetism.<br>Applying knowledge and understanding: The student will develop the capability<br>to describe the physical phenomena analytically and to apply them to medicine.<br>Making judgments: students will be able to recognize and classify physical<br>processes, to independently choose the best strategy for the resolution of<br>physical problems and the laws to apply. The student will be able to critically<br>evaluate the results obtained.<br>Communication: Special care will be dedicated to the acquisition of a rigorous<br>scientific language. The student will be able to articulate clearly and concisely<br>the fundamental laws, pinpointing the connections with the other courses.<br>Lifelong learning skills: the students will acquire a method for the study of<br>physical processes which will be useful in subsequent applications to medicine.<br>In particular, they will know how to describe the observed phenomena in<br>quantitative terms, by adopting appropriate physical quantities. They will also be<br>able to decompose complex phenomena into their elementary terms and will<br>interpret them, by using the laws of classical physics.                                                                                                                           |
| ASSESSMENT METHODS | The oral exam consists on a minimum of two/three questions on the course program. The student must demonstrate, with adequate language skills, his knowledge and understanding of the course program. The evaluation criteria are as follows: i) Excellent (30-30 cum laude): excellent knowledge and understanding of the topics, excellent language skills, advanced capability of applying the notions acquired for problem solving; ii) Very good (26-29): good knowledge of the course program and good language skills, good capability of applying the notions acquired for problem solving; iii) Good (22-25): good knowledge of the course program, but without a deep understanding of all its aspects, limited capability of independently applying the notions acquired for problem solving; iii) Good (22-25): good knowledge of the course program, but without a deep understanding of all its aspects, limited capability of independently applying the notions acquired for problem solving; iii) Good (22-25): good knowledge of the course program, but without a deep understanding of all its aspects, limited capability of independently applying the notions acquired for problem solving iv) Fair (18-21): modest understanding and minimum basic knowledge of the course program, difficulties in the resolution of the exercises, limited language skills; v) Poor: lack of understanding of basic subjects, limited knowledge of the course program. |
| TEACHING METHODS   | Lectures and exercises.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

## MODULE APPLIED MEDICAL PHYSICS

Prof. MARCO MICELI

#### SUGGESTED BIBLIOGRAPHY

| - D. Halliday, R. Resnick, K. Krane, FISICA 1, Editrice Ambrosiana- Milano<br>- E. Ragozzino, ELEMENTI DI FISICA, Edises |                             |  |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|
| AMBIT                                                                                                                    | 10303-Scienze propedeutiche |  |
| INDIVIDUAL STUDY (Hrs)                                                                                                   | 60                          |  |
| COURSE ACTIVITY (Hrs)                                                                                                    | 40                          |  |
| EDUCATIONAL OBJECTIVES OF THE MODULE                                                                                     |                             |  |

knowledge and understanding of classical physics (mechanics, hydrodynamics, thermodynamics, electromagnetism); knowledge of the scientific method; capability to address and discuss problems of classical physics and their application to medicine.

| SYLLABUS |                                                                                                                                                                                   |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Hrs      | Frontal teaching                                                                                                                                                                  |  |
| 4        | Physical quantities, definition and measures. Scalars and vectors. Particle kinematics                                                                                            |  |
| 4        | Newton's laws and particle mechanics. Inertial and non-inertial systems                                                                                                           |  |
| 5        | Work and kinetic energy. Conservative forces, potential energy and mechanical energy.<br>Momentum and collisions                                                                  |  |
| 7        | Hydrostatics. Hydrodynamics. Applications to the blood flow in the circulatory system                                                                                             |  |
| 6        | Thermometry and calorimetry. Ideal gas. Thermodynamic processes. First and second law of thermodynamics. Heat engines.                                                            |  |
| 2        | Introduction to sound waves and to the principle of operation of ultraound diagnostics                                                                                            |  |
| 5        | Electrostatics: Coulomb's law and Gauss theorem. Voltage. Capacitors. Electrical networks and Ohm's law                                                                           |  |
| 3        | Magnetic field. Lorentz force. Cyclotron frequency. Magnetic field and electric currents.<br>Introduction to electromagnetic waves. Introduction to X-ray diagnostics in medicine |  |
| Hrs      | Practice                                                                                                                                                                          |  |
| 4        | Solving excercises and problems                                                                                                                                                   |  |

## MODULE COMPUTER SCIENCE

## Prof.ssa SILVIA GIUSEPPINA FRANCHINI

| SUGGESTED BIBLIOGRAPHY                                                                                                                                                                                                                                              |                                 |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|--|
| R.C. Davidson – Metodi matematici per un corso introduttivo di fisica, Edises 1998, ISBN: 8879591363.<br>E. Ragozzino – Elementi di Fisica, Edises 2008, ISBN: 9788879594639.<br>G. Miele, O. Pisanti – Introduzione alla fisica, Edises 2011, ISBN: 9788879596800. |                                 |  |  |
| AMBIT                                                                                                                                                                                                                                                               | 10315-Scienze interdisciplinari |  |  |
| INDIVIDUAL STUDY (Hrs)                                                                                                                                                                                                                                              | 45                              |  |  |
| COURSE ACTIVITY (Hrs)                                                                                                                                                                                                                                               | 30                              |  |  |
| EDUCATIONAL OBJECTIVES OF THE MODULE                                                                                                                                                                                                                                |                                 |  |  |
|                                                                                                                                                                                                                                                                     |                                 |  |  |

The course aims to convey to the student some fundamental notions of computer science both from the theoretical point of view and from the point of view of application.

| r   | 3122003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hrs | Frontal teaching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2   | ntroduction; Information concept ; Evolution of Computers ; Von Neumann architecture ;<br>Definition of Computer ; Algorithm definition ; well- ordered set ; Operations unambiguous and<br>calculable ; 2. Information and Computer Science , Computer Science and Telecommunications ;<br>Information and support ; Configuration and Codes ; Define a code ; Information coding ;<br>Encoding Data and Instructions                                                                                                                                     |
| 2   | Information and Informatics ; Binary -encoding -encoding ASCII -Conversion Binary / Decimal -<br>Conversion Decimal / Binary Tutorial conversions Binary / Decimal Decimal and Binary ;                                                                                                                                                                                                                                                                                                                                                                    |
| 2   | The development and structuring information ; Problems , algorithms , solutions and Executors ;<br>Instruction , elementary actions , Effective Solutions ; Break it down into sub-problems ;<br>Executors and languages ; Property ' elementary action ; Automatic solution ; Basic concepts,<br>algorithm , program , program development ; Encoding algorithms , algorithms and variables ;<br>Data and instructions ; Excel Tutorial - Spreadsheet                                                                                                     |
| 3   | Algorithm Representation ( natural language , pseudocode , block diagram , programming language ) ; Flow diagrams ; The control structures ( conditional statements , cyclical repetitions of instructions ) ; -Selection Simple ( if) , two-way selection ( if then else ) , selecting a more ' ways ( if then else if , else if then ) ; -Cycle To initial condition (While - do ) ; Examples conditional statements If then else is and permanent instructions Do While Examples Block Diagrams                                                         |
| 2   | Cycle end condition ( Do- while) ; Iterative loop ( For loop ) ; Practical examples of conditional statements , loops and iterative 4. Programming ; Programming language syntax and semantics ; Machine language ; Assembly language ; High-level language ; Language of II and III generation ; Translators , interpreters and compilers ; The fundamental parts of a program : the program identification, declaration of the variables used , specification of the executive part of the program ( the body of the program ) ; examples of algorithm . |
| 2   | Software; the S.O. functions (Operating system); Advantages of S.O. Elements of a S.O. applications ; Process and Program ; Organization of a S.O .; Core ( or kernel ) of a S.O .; Memory management; Thing and ' the System File . Excel Spreadsheet Tutorial                                                                                                                                                                                                                                                                                            |

## **SYLLABUS**