UNIVERSITÀ DEGLI STUDI DI PALERMO

DEPARTMENT	Architettura		
ACADEMIC YEAR	2018/2019		
MASTER'S DEGREE (MSC)	ARCHITECTURE		
SUBJECT	FUNDAMENTALS AND APPLICATIONS OF DESCRIPTIVE GEOMETRY		
TYPE OF EDUCATIONAL ACTIVITY	A		
AMBIT	50664-Rappresentazione dell'architettura e dell'ambiente		
CODE	03515		
SCIENTIFIC SECTOR(S)	ICAR/17		
HEAD PROFESSOR(S)	AGNELLO FABRIZIO INZERILLO LAURA	Professore Associato Professore Associato	Univ. di PALERMO Univ. di PALERMO
OTHER PROFESSOR(S)			
CREDITS	6		
INDIVIDUAL STUDY (Hrs)	84		
COURSE ACTIVITY (Hrs)	66		
PROPAEDEUTICAL SUBJECTS			
MUTUALIZATION			
YEAR	1		
TERM (SEMESTER)	1° semester		
ATTENDANCE	Not mandatory		
EVALUATION	Out of 30		
TEACHER OFFICE HOURS	AGNELLO FABRIZIO Wednesda! 09:00 13:00 INZERILLO LAURA Monday 12:00 13:00	Dipartimento di Architettura Scala F4, Primo piano. DIPARTIMENTO DI INGE PIANO TERRA STANZA	ale delle Scienze Edificio 8, RIA EDIFICIO 8EX DICAM

PREREQUISITES	The student is not expected to have specific skills.
LEARNING OUTCOMES	Knowledge: The student knows the general principles of projection and the specific features of parallel and perspective projection, so as the peculiar features of surfaces generated by the movement, revolvement (or the combination of both) of a figure. Understanding: The student is able to make out the features of a spatial layout starting from a drawing. Applying knowledge and understanding: The student is able to draw, by means of a pencil, a simple spatial layout or an architectural elements (stairs, vaults), using orthogonal and oblique projection and perspective. Making judgements: The student understands the links between design and representation. Communication skills: The student is able to draw correct drawings that properly represent the features of architectural elements and of a house. Learning skills: The student is able to study architecture both interpreting and producing drawing, according to a habit long practiced by architects.
ASSESSMENT METHODS	The mark, reported in thirtieths, results the sum of three scores in tenths, where 6 means sufficient and 10 means excellent. Full marks will be granted if the sum of the scores is 30 and if the student leads the discussion with self-confidence. Score 1: Graphic test focusing the drawing of simple buildings (e.g. a house for a family) or architectural elements (e.g. vaults and stairs) and the restitution of distances, angles and shapes from a drawing. Score 2: Discussion focusing the fundamentals of the Science of representation: the questions will start from the discussion on theoretical assumptions implicit in the graphic test; the student will be asked to make free hand drawings which refer to the discussed subjects. If some errors appear in the graphic test, the student will have the opportunity to discuss them with the commission. Score 3: Assessment of 5 plates in the format A2 $(59,4 * 42 \mathrm{~cm})$ drawn with pencil on opaque or transparent papers. The plates will focus the representation of a house, of stairs and vaults. Scores will be assigned according to the following criteria: Graphic test Excellent (10): the graphic test is performed with no errors and a good graphic. Very good (9): the graphic test is performed with no errors and a satisfactory graphic. Good (8): the graphic test is performed with one error. Satisfactory (7): the graphic test is performed with two errors. Passing grade (6): the graphic test is performed with three errors Unsatisfactory: the graphic test is performed with more than three errors Discussion Excellent (10): the student proves a full mastery of the theoretical fundaments of the Representation science and, at the same time, is able to apply the concepts to exercises that are unfamiliar to him/her. Very good (9): the student proves a full mastery of the theoretical fundaments of the Representation science but reveals uncertainty in applying the concepts to exercises that are unfamiliar to him/her. Good (8): the student proves a good mastery of the theoretical fundaments of the Representation science and is able to evaluate the correspondence between the concepts and their application. Satisfactory (7): the student proves a good mastery of the theoretical fundaments of the Representation Passing grade (6): the student proves having studied the theoretical fundaments of the Representation science, but shows gaps in autonomous application. Unsatisfactory: the discussion shows gaps in the knowledge of the theoretical fundaments of the Representation science. Plates Excellent (10): The plates are correct and their graphic quality is excellent. Very good (9): The plates are correct and their graphic quality is very good. Good (8): The plates are correct and their graphic quality is very good. Satisfactory (7): The plates show one or two graphic errors. Passing grade (6): The plates show one or two conceptual errors Unsatisfactory: The plates show more than two conceptual errors.
EDUCATIONAL OBJECTIVES	Knowledge of the subjects underlying the transfer of spatial relations on a plane support (paper) and the inverse, that is finding out spatial relations from

	drawings. Comprehension of the links between the forms of architectural design and the forms of its representation. Knowledge of the geometrical layout of surfaces and of the process leading to determine the intersection between a surface and a straight line, a plane and another surface.
TEACHING METHODS	Teaching activity is made of lessons and of tests addressed to evaluate the response of students to the discussed subjects. The teacher reserves one morning a week (Wednesday from 9.00 to 13.00 in his room at Building 8, F4 Stair, First floor) to meet the students who need further explications or the review of drawings.
SUGGESTED BIBLIOGRAPHY	Riccardo Migliari, Geometria Descrittiva, 2 vol., CittaStudi, Roma 2009.

SYLLABUS

Hrs	Frontal teaching
2	Introduction to the course. The section and projection process.
2	Definition of point and straight line at infinity. Specific features of central and parallel projections. projecting lines and planes.
4	Defintion of dihedron. Straight sections of dihedral angles. Lines of intersetion between dihedral planes and straight section planes; lines othogonal to a plane. Rules for the revolution of a plane figure.
2	Representation of straight lines on a plane in parallel projection.
12	Parallel orthogonal projection. Orthogonal axonometry and orthogonal multiple projectionsaccording to Monge's method.
2	Straight line orthogonal to a generic plane in orthogonal projection.
2	Oblique axonometry
2	Straight line orthogonal to a plane in oblique axonometry.
4	Perspective projection on a projection plane.
2	Straight lines on a generic plane in perspective.
2	Straight lines orthogonal to a plane in perspective
2	Perspective on a horizontal and a vertical picture plane.
4	Perspective restitution
2	Classification of surfaces
2	Outline of cone, sphere and cylinder in orthogonal and oblique parallel projection.
4	Representation of barrel, sail, cross and pavilion vaults and of multiple light and spiral stairs in orthogonal and oblique parallel projection.
4	Notes on the representation of shades and of reflected images.
Hrs	
4	Exercices on orthogonal parallel projection.
4	Exercises on oblique axonometry
4	Exercises on perspective.

PREREQUISITES	The student is not expected to have specific skills
LEARNING OUTCOMES	Knowledge: The student knows the general principles of projection and the specific features of parallel and perspective projection, so as the peculiar features of surfaces generated by the movement, revolvement (or the combination of both) of a figure. Understanding: The student is able to make out the features of a spatial layout starting from a drawing. Applying knowledge and understanding: The student is able to draw, by means of a pencil, a simple spatial layout or an architectural elements (stairs, vaults), using orthogonal and oblique projection and perspective. Making judgements: The student understands the links between design and representation. Communication skills: The student is able to draw correct drawings that properly represent the features of architectural elements and of a house. Learning skills: The student is able to study architecture both interpreting and producing drawing, according to a habit long practiced by architects.
ASSESSMENT METHODS	The mark, reported in thirtieths, results the sum of three scores in tenths, where 6 means sufficient and 10 means excellent. Full marks will be granted if the sum of the scores is 30 and if the student leads the discussion with self-confidence. Score 1: Graphic test focusing the drawing of simple buildings (e.g. a house for a family) or architectural elements (e.g. vaults and stairs) and the restitution of distances, angles and shapes from a drawing. Score 2: Discussion focusing the fundamentals of the Science of representation: the questions will start from the discussion on theoretical assumptions implicit in the graphic test; the student will be asked to make free hand drawings which refer to the discussed subjects. If some errors appear in the graphic test, the student will have the opportunity to discuss them with the commission. Score 3: Assessment of 5 plates in the format A2 ($59,4 * 42 \mathrm{~cm}$) drawn with pencil on opaque or transparent papers. The plates will focus the representation of a house, of stairs and vaults. Scores will be assigned according to the following criteria: Graphic test Excellent (10): the graphic test is performed with no errors and a good graphic. Very good (9): the graphic test is performed with no errors and a satisfactory graphic. Good (8): the graphic test is performed with one error. Satisfactory (7): the graphic test is performed with two errors. Passing grade (6): the graphic test is performed with three errors Unsatisfactory: the graphic test is performed with more than three errors Discussion Excellent (10): the student proves a full mastery of the theoretical fundaments of the Representation science and, at the same time, is able to apply the concepts to exercises that are unfamiliar to him/her. Very good (9): the student proves a full mastery of the theoretical fundaments of the Representation science but reveals uncertainty in applying the concepts to exercises that are unfamiliar to him/her. Good (8): the student proves a good mastery of the theoretical fundaments of the Representation science and is able to evaluate the correspondence between the concepts and their application. Satisfactory (7): the student proves a good mastery of the theoretical fundaments of the Representation Passing grade (6): the student proves having studied the theoretical fundaments of the Representation science, but shows gaps in autonomous application. Unsatisfactory: the discussion shows gaps in the knowledge of the theoretical fundaments of the Representation science. Plates Excellent (10): The plates are correct and their graphic quality is excellent. Very good (9): The plates are correct and their graphic quality is very good. Good (8): The plates are correct and their graphic quality is very good. Satisfactory (7): The plates show one or two graphic errors. Passing grade (6): The plates show one or two conceptual errors Unsatisfactory: The plates show more than two conceptual errors.
EDUCATIONAL OBJECTIVES	Knowledge of the subjects underlying the transfer of spatial relations on a plane support (paper) and the inverse, that is finding out spatial relations from drawings. Comprehension of the links between the forms of architectural design and the forms of its representation. Knowledge of the geometrical layout of surfaces and of the process leading to determine the intersection between a surface and a straight line, a plane and another surface
TEACHING METHODS	Teaching activity is made of lessons and of tests addressed to evaluate the response of students to the discussed subjects. The teacher reserves one morning a week (Wednesday from 9.00 to 13.00 in his room at Building 8, F4

	Stair, First floor) to meet the students who need further explications or the review of drawings.
SUGGESTED BIBLIOGRAPHY	Riccardo Migliari, Geometria Descrittiva, 2 vol., CittaStudi, Roma 2009

SYLLABUS

Hrs	Frontal teaching
2	Introduction to the course. The section and projection process.
2	Definition of point and straight line at infinity. Specific features of central and parallel projections. projecting lines and planes.
4	Defintion of dihedron. Straight sections of dihedral angles. Lines of intersetion between dihedral planes and straight section planes; lines othogonal to a plane. Rules for the revolution of a plane figure
2	Representation of straight lines on a plane in parallel projection.
12	Parallel orthogonal projection. Orthogonal axonometry and orthogonal multiple projectionsaccording to Monge's method.
2	Straight line orthogonal to a generic plane in orthogonal projection.
2	Oblique axonometry
2	Straight line orthogonal to a plane in oblique axonometry.
4	Perspective projection on a projection plane.
2	2 Straight lines on a generic plane in perspective.
2	2 Straight lines orthogonal to a plane in perspective
2	Perspective on a horizontal and a vertical picture plane.
4	Perspective restitution
2	Classification of surfaces
2	2 Outline of cone, sphere and cylinder in orthogonal and oblique parallel projection.
4	4 Representation of barrel, sail, cross and pavilion vaults and of multiple light and spiral stairs in orthogonal and oblique parallel projection.
4	Notes on the representation of shades and of reflected images.
Hrs	
4	Exercices on orthogonal parallel projection.
4	Exercises on oblique axonometry
4	4 Exercises on perspective.

