

UNIVERSITÀ DEGLI STUDI DI PALERMO

Ingegneria
2017/2018
INGEGNERIA CIBERNETICA
MATHEMATICAL ANALYSIS 1
A
50283-Matematica, informatica e statistica
01239
MAT/05
TRIOLO SALVATORE Professore Associato Univ. di PALERMO
9
144
81
1
1° semester
Not mandatory
Out of 30
TRIOLO SALVATORE
Wednesday 10:00 12:00 Dip Metodi e modelli matematici primo piano.

DOCENTE: Prof. SALVATORE TRIOLO

PREREQUISITES	Classical knowledge of the concepts of mathematical logic. Solution of equation, system of equation, inequalities, system of inequalities. Basic knowledge of trigonometry, Basic knowledge of trigonometry.
LEARNING OUTCOMES	Basic knowledge of trigonometry. Basic knowledge of trigonometry. Knowledge and Understanding The student, at the end of the course, will have acquired knowledge and
	methodologies to address and solve problems of differential and integral calculus. The student must also know and understand the theorems and their proofs on
	the above topics. Applying knowledge and understanding
	The student must be able to use the differential and integral calculus in order to solve mathematical problems arising also from classical mechanics.
	Making judgements The student will develop a critical ability in characterizing the suitable and relevant solution to the proposed problem. The student will acquire the ability to formalize and analyze new problems in full autonomy, both in qualitative way and in rigorous way. The formative objectives will be reached using frontal lessons and problems and exercises solved in classroom. The attainment of the objectives is verified by written test and oral examination.
	Communication skills The student will acquire the ability to expose in clear and rigorous way, using adequately the disciplinary lexicon, the results of the characterized qualitative solution and problem analysis.
	The communication abilities will be verified in the oral examination. Learning skills
	The student will acquire the ability to contextualize own knowledges, eventually adapting in an independent way, in wide and multidisciplinary area of interests.
ASSESSMENT METHODS	The knowledge and the understanding of the student about the contents of the course will be verified through a written test (2 hours) and an oral discussion.
	In the written test the resolution of four exercises is demanded. The exercises will be structured in several questions in order to determine
	whether the student has gained knowledge and understanding of the proposed arguments
	The final evaluation will be scaled according to the following conditions: 30-30 with honors
	optimal knowledge of the contents of the course, optimal property of language, very good analytic abilities and competence in problem solving; 26-29
	good mastery of the contents of the course, very good property of language, good competence in problem-solving ; 24-25
	knowledge of base treated contents, discrete property of language, with limited ability to independently apply the competence to solve the proposed problems; 21-23
	not have full mastery of the main contents of the course but possesses knowledge, satisfactory property of language, insufficient ability to independently apply the acquired knowledge; 18-20
	minimal base knowledge of the contents of the course and of the technical language, most insufficient or null ability to independently apply the acquired knowledge ; no sufficient
	does not possess an acceptable knowledge of the contents of the presented topics (no sufficient);
EDUCATIONAL OBJECTIVES	The student at the end of the course will acquire the knowledge on the main topics, methodologies on infinitesimal differential calculus. In particular, the student will be able to understand the issues arising from the needing to create a rigorous language using the logical-deductive method to deal with intuitively simple math problems. The students will be also able to
	understand simple physical problems and to convert them in the correct mathematical language.
TEACHING METHODS	The course consists of frontal lessons and discussion in which illustrative problems are resolved.
SUGGESTED BIBLIOGRAPHY	Bertsch Dal Passo Elementi di Analisi matematica

STELABOS				
Hrs	Frontal teaching			
2	real numbers.			

SYLLABUS

Hrs	Frontal teaching	
1	mathematical analysis objectives.	
17	Limits for functions: definitions,main properties and theorem. Continuity of a function. Differential calculus. Taylor's formula.	
20	Integration Theory. The fundamental theorem of calculus.	
9	Sequences and series: convergence criteria.	
Hrs	Practice	
8	Limits for functions: definitions,main properties and theorem. Continuity of a function. Differential calculus. Taylor's formula.	
8	Integration by parts and by substitution, integration of rational functions.	
8	Exercises.	