SCUOLA	Politecnica
ANNO ACCADEMICO	2015/2016
CORSO DI LAUREA TRIENNALE	Ingegneria Elettrica (CL)
INSEGNAMENTO	Elettronica 2
TIPO DI ATTIVITÀ	Scelta
AMBITO DISCIPLINARE	L-9
CODICE INSEGNAMENTO	02945
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	
SETTORI SCIENTIFICO DISCIPLINARI	ING-INF/01
DOCENTE RESPONSABILE	Roberto Macaluso
	Ricercatore Confermato
	Università di Palermo
CFU	6
NUMERO DI ORE RISERVATE ALLO	102
STUDIO PERSONALE	102
NUMERO DI ORE RISERVATE ALLE	48
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Elettronica 1 (consigliata)
ANNO DI CORSO	III
SEDE DI SVOLGIMENTO DELLE	Polo didattico di Caltanissetta - Via della Real
LEZIONI	Maestranza
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in aula
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Consultare il sito politecnica.unipa.it
CALENDARIO DELLE ATTIVITÀ	Consultare il sito politecnica.unipa.it
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Al termine di ogni lezione (nel periodo di
STUDENTI	lezioni); per appuntamento (negli altri periodi)

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Il corso si propone di fornire allo studente una preparazione di base ad ampio spettro nella analisi e progettazione di sistemi elettronici digitali. Lo studente sarà in grado di analizzare, individuare e risolvere problematiche riguardanti sistemi digitali di media complessità realizzati utilizzando le famiglie logiche più diffuse: CMOS e TTL.

Capacità di applicare conoscenza e comprensione

Lo studente sarà in grado di applicare le metodologie per l'analisi e la progettazione di circuiti digitali insieme alle necessarie interfacce analogiche. Sarà altresì in grado di leggere e utilizzare i *data sheets* forniti dai costruttori di circuiti integrati in modo da poter scegliere opportunamente i componenti necessari a realizzare i progetti proposti. Sarà in grado di operare delle scelte progettuali che tengono conto della tolleranza dei componenti utilizzati, del fan-out degli integrati, dei tempi di propagazione.

Autonomia di giudizio

Lo studente avrà acquisito una metodologia propria di analisi del problema da risolvere e delle

metodologie progettuali da utilizzare per risolverlo nel modo più efficiente possibile; attraverso tale metodologia egli sarà in grado di scegliere i componenti più adatti per la stesura dello schema esecutivo del progetto di un sistema digitale di media complessità.

Abilità comunicative

Lo studente acquisirà la capacità di comunicare efficacemente in modo scritto ed orale su argomenti e problematiche inerenti l'oggetto del corso anche in un contesto internazionale: particolare attenzione è infatti rivolta alla terminologia in lingua inglese. Lo studente sarà in grado di sostenere conversazioni sulle tecnologie utilizzate per la realizzazione della maggioranza di circuiti elettronici digitali in commercio, di evidenziare problemi relativi alla velocità e alla dissipazione di potenza di tali sistemi digitali.

Capacità d'apprendimento

Lo studente sarà in grado di affrontare in autonomia qualsiasi problematica relativa all'analisi e alla progettazione di circuiti digitali di media complessità in tecnologia TTL o CMOS. Questa padronanza gli consentirà di accedere senza sforzo sia ad ambiti professionali di medio livello tecnico nel settore sia ai corsi specifici della laurea specialistica.

OBIETTIVI FORMATIVI

Il corso rappresenta il primo insegnamento di Elettronica Digitale e si propone di fornire agli studenti una ampia preparazione di base nel campo della analisi e della progettazione di sistemi elettronici digitali. A supporto delle lezioni teoriche, sono previste delle esercitazioni tenute dal docente sui vari argomenti del corso. Tali esercitazioni saranno focalizzate sia all'analisi sia alla progettazione di circuiti digitali di media complessità. A tal fine si utilizzeranno dei *data sheets* di circuiti integrati commerciali, e questo consentirà agli studenti di impadronirsi concretamente delle metodologie per l'analisi e la progettazione di sistemi elettronici digitali.

ORE FRONTALI	LEZIONI FRONTALI
2	Introduzione all'elettronica digitale e confronto con l'elettronica analogica.
8	Funzionamento in commutazione dei componenti attivi a semiconduttore: transistore bipolare
	(BJT) e MOSFET/CMOS. Applicazioni.
	Dimensionamento di un circuito a BJT per il pilotaggio di un LED.
	Dimensionamento di un circuito a BJT per il pilotaggio di un relè di bassa potenza.
5	Stato dell'arte della tecnologia CMOS e prospettive future. Tempo di propagazione e
	dissipazione di potenza (statica e dinamica) di un invertitore CMOS. Potenza di switching e
	di cortocircuito. Prodotto ritardo-potenza. Stadi separatori di uscita (buffer).
	Calcolo del tempo di propagazione di un inverter CMOS.
4	Famiglie logiche TTL, STTL e CMOS: caratteristiche statiche e dinamiche. Studio delle
	porte fondamentali. Compatibilità e comparazione tra famiglie. Problemi di fan out e
	interconnessione. Velocità e dissipazione di potenza.
3	Metodi di sintesi di funzioni logiche implementate in logica CMOS con le reti di pull-up e
	pull down. Esempi. Dipendenza del ritardo dalla configurazione degli ingressi.
2	Circuiti per reti sequenziali in tecnologia CMOS: circuiti bistabili integrati tipo SR, JK, D e
	T. Registri a scorrimento. Presentazione di <i>data sheets</i> di integrati disponibili in commercio.
3	Circuiti di conteggio e loro utilizzazione nei sistemi elettronici digitali. Presentazione di data
	sheets di integrati disponibili in commercio.
2	Codificatori-decodificatori, multiplexer-demultiplexer in logica TTL e CMOS.
2	Circuiti multivibratori realizzati con porte CMOS: Schmitt trigger, astabile, monostabile.
8	Metodologie per la progettazione di sistemi digitali ed esempi di progetti.
2	Convertitori A-D e D-A.

	ESERCITAZIONI
7	- Esercizi sui CMOS: sintesi di funzioni booleane con logica CMOS.
	- Progetto di un orologio digitale. Visualizzazione di ore e minuti su dispaly a 7 segmenti;
	impostazione dell'ora e della sveglia mediante pulsanti di avanzamento (indietreggiamento)
	lento e veloce; attivazione della sveglia mediante altoparlante.
TESTI CONSIGLIATI	 Sedra/Smith: Circuiti per la Microelettronica – IV Edizione-Ingegneria 2000. Paolo Spirito: Elettronica Digitale – McGraw Hill, 2006. Trasparenze proiettate dal docente durante il corso.