FACOLTÀ	Economia
ANNO ACCADEMICO	2011-2012
CORSO DI LAUREA	Statistica per l'analisi dei dati L41
INSEGNAMENTO	Analisi statistica delle serie temporali e spaziali
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Statistico, statistico applicato, demografico
ARTICOLAZIONE IN MODULI	NO
CODICE INSEGNAMENTO	01259
SETTORI SCIENTIFICO DISCIPLINARI	SECS-S/01
DOCENTE RESPONSABILE	Francesca Di Salvo
CFU	6
NUMERO DI ORE RISERVATE ALLO STUDIO	96
PERSONALE	
NUMERO DI ORE RISERVATE ALLE	54
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Statistica 2
ANNO DI CORSO	III
SEDE DI SVOLGIMENTO DELLE LEZIONI	Aula Informatica
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali ed esercitazioni in laboratorio
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova pratica al computer e prova orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	III quadrimestre
CALENDARIO DELLE ATTIVITÀ	Lu 10-12 Aula INF; Me 12-14 Aula Inf; gi 10-12
DIDATTICHE	Aula INF
ORARIO DI RICEVIMENTO DEGLI	Mercoledì 12.00-14.00
STUDENTI	Giovedì 12.00-14.00

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Acquisizione delle problematiche e delle peculiarità dello studio dei fenomeni rappresentabili attraverso un sistema di variabili.

Conoscenza delle peculiarità dell'evoluzione dei fenomeni nel tempo e nello spazio; definizione degli aspetti metodologici di individuazione e stima dei parametri (tralasciando gli aspetti computazionali), di scelta del modello e di analisi grafiche dei residui nei Modelli ARIMA e ARIMA stagionali.

Conoscenza della natura dei dati georeferenziati; comprensione del concetto e della definizione operativa della contiguità, conoscenza delle misure di autocorrelazione spaziale, comprensione dei problemi connessi alla definizione delle componenti di scala .

Capacità di applicare conoscenza e comprensione

Capacità di applicare le conoscenze acquisite per analizzare casi reali, che può delinearsi in capacità di formulazione del problema, di modellazione dei dati, implementazione delle analisi mediante l'uso di software statistico dedicato, di elaborazione delle informazioni e di valutazione dei risultati conseguiti.

Autonomia di giudizio

Capacità di interpretare i dati e tradurre in termini statistici l'evoluzione temporale e/o spaziale dei fenomeni osservati, capacità di formulare adeguate ipotesi interpretative.

Abilità comunicative

Capacità di comunicazione dei risultati ottenuti in termini descrittivi, elaborazione di relazioni che si avvalgono di strumenti grafici.

Capacità di esposizione degli esiti degli studi mediante un linguaggio rigoroso ed allo stesso tempo comprensibile anche ad un pubblico non esperto.

Capacità di inserirsi in gruppi di lavoro in cui l'analisi della dipendenza temporale e spaziale si integra alle conoscenze - di natura economica, finanziaria, ambientale, ecc. - dei fenomeni da analizzare.

Capacità d'apprendimento

Capacità di adeguare ed integrare le proprie conoscenze in base al contesto lavorativo. Capacità di seguire corsi d'approfondimento, di aggiornamento e seminari specialistici di applicazione delle metodologie statistiche di analisi spaziale e/o temporale in differenti contesti (economico, ambientale, epidemiologico, ecc...).

OBIETTIVI FORMATIVI DEL CORSO

Lo scopo del corso è di fornire agli studenti strumenti adeguati ed aggiornati, che consentano di modellare le principali caratteristiche dell'evoluzione dei fenomeni nel tempo e nello spazio. Con un approccio di tipo stocastico si affronta lo studio e la previsione delle serie temporali e spaziali mediante:

- I modelli ARIMA e ARIMA stagionali, soffermandosi sull'utilizzo della funzione di autocorrelazione globale e parziale per l'individuazione del modello, utilizzando inoltre algoritmi, implementati in ambiente statistico R, per la stima, la scelta del modello e la diagnosi dei residui.
- L'introduzione all'analisi dei dati spaziali e delle loro caratteristiche, la classificazione dei metodi di analisi dei dati georeferenziati, l'introduzione del concetto e della definizione operativa della contiguità, la trattazione delle misure di autocorrelazione spaziale.

La presentazione delle tecniche ha un taglio prevalentemente operativo ed è accompagnata da applicazioni su serie reali condotte tramite l'utilizzo dei comandi e dei pacchetti disponibili in ambiente statistico R.

ARGOMENTI	Lezioni frontali (ore)	Esercitazioni (ore)	totale
Aspetti generali e definitori delle serie temporali e spaziali. Processi stocastici. Processi stocastici stazionari. La funzione di autocorrelazione di un processo stocastico stazionario: proprietà, rappresentazione ed interpretazione. Stima della funzione di autocorrelazione.	4	0	4
Scomposizione di una serie temporale in componenti elementari. Componenti di una serie temporale. Metodi di scomposizione. Destagionalizzazione. Stima del trend mediante modelli parametrici e non parametrici	6	4	10
Serie storiche come realizzazioni di processi aleatori stazionari. Il teorema di Wold ed i Modelli ARMA/ARIMA. Modelli a media mobile. Invertibilità di un modello MA(q). Modelli autoregressivi AR(p). La funzione di autocorrelazione parziale. Identificazione di un modello ARMA/ARIMA. Modelli ARMA/ARIMA Stagionali. Stima dei parametri e Analisi dei residui	12	6	18
Serie spaziali: Tipologie di dati spaziali: Dati geostatistici: Stazionarietà. Isotropia. Funzione di covarianza, correlogramma e variogramma. Alcuni modelli parametrici isotropici. Analisi delle componenti di piccola e di larga scala. Definizione ed esempi di processi di punto spaziali; proprietà del primo e del secondo ordine. Processo di Punto poissoniano omogeneo. Allontanamenti dallo schema di casualità completa. Dati spaziali aggregati: Matrici di contiguità; Modelli di regressione con dipendenza spaziale. Esempi di analisi di dati spaziali mediante il software R. Uso delle librerie geoR, akima, spatstat, sp, spdep.	14	8	22

Totale	36	18	54	

TESTI CONSIGLIATI

- E. Bee Dagum (2002), Analisi delle serie storiche. Springer
- R. S. Bivand, E. J. Pebesma, and V. Gómez-Rubio (2008), Applied Spatial Data in **R** Springer: New York, NY.
- Using R (with applications in Time Series Analysis) G. Shaddick 2004 URL http://people.bath.ac.uk/masgs/time%20series/TimeSeriesR2004.pdf
- The spatstat package A. Baddeley R. Turner. URL http://www.maths.uwa.edu.au/adrian/spatstat.html
- Software, manuali e dispense open content indicate dal docente e disponibili sul sito http://dssm.unipa.it/CRAN