STRUTTURA	Scuola Politecnica – DEIM
ANNO ACCADEMICO	2015/16
CORSO DI LAUREA	Ingegneria dell'Energia – curriculum Elettrico
INSEGNAMENTO	Principi di Ingegneria Elettrica
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	50298 - (B) Ingegneria elettrica
CODICE INSEGNAMENTO	05767
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	
SETTORI SCIENTIFICO DISCIPLINARI	ING-IND/31
DOCENTE RESPONSABILE	GUIDO ALA
	Professore Associato confermato
	Università degli Studi di Palermo - DEIM
	http://portale.unipa.it/persone/docenti/a/guido.ala
CFU	12
NUMERO DI ORE RISERVATE ALLO	162
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	108
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Nessuna (si consiglia comunque di avere
	acquisito le competenze relative ai corsi di
	matematica 1 e 2 e di Fisica 1 e 2)
ANNO DI CORSO	Secondo
SEDE DI SVOLGIMENTO DELLE	Consultare il sito politecnica.unipa.it
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali. Esercitazioni in aula
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova scritta e colloquio
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Consultare il sito politecnica.unipa.it
CALENDARIO DELLE ATTIVITÀ	Consultare il sito politecnica.unipa.it
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Tutti i giorni previo appuntamento telefonico o
STUDENTI	per e-mail

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

L'allievo, al termine del corso, avrà acquisito conoscenze e capacità di comprensione su:

- metodi di analisi delle reti elettriche lineari in regime stazionario, in transitorio, in regime sinusoidale:
- metodi di analisi delle reti elettriche lineari nel dominio della frequenza;
- metodi di analisi dei sistemi trifase;
- metodi di analisi dei dispositivi elettromagnetici che coinvolgono gli aspetti riguardanti il campo elettromagnetico in regime stazionario e quasi-stazionario, con particolare riferimento alle applicazioni tipiche nei campi dei sistemi elettrici per l'energia, delle macchine elettriche, dell'elettronica applicata ai sistemi industriali.

La verifica di questo obiettivo viene effettuata durante la prova scritta e quella orale nell'ambito della verifica finale.

Capacità di applicare conoscenza e comprensione

L'allievo, al termine del corso, sarà in grado di:

- discernere nel contesto delle reti elettriche lineari, i diversi fenomeni fisici, individuando relazioni di causa ed effetto, identificando, formulando ed analizzando tali fenomeni per mezzo di metodi, tecniche e strumenti aggiornati;
- applicare i principali teoremi delle reti elettriche lineari;
- impostare l'analisi nel dominio del tempo delle reti elettriche lineari;
- impostare l'analisi frequenziale delle reti elettriche lineari;
- impostare l'analisi di sistemi trifase simmetrici, equilibrati e squilibrati;
- identificare, formulare e analizzare i problemi elettromagnetici tipici dell'Ingegneria Elettrica utilizzando metodi, tecniche e strumenti aggiornati.

La verifica di questo obiettivo viene effettuata durante la prova scritta e durante la discussione orale nell'ambito della verifica finale.

Autonomia di giudizio

L'allievo avrà acquisito l'autonomia necessaria per poter giudicare criticamente i risultati dell'analisi elettromagnetica stazionaria e dell'analisi circuitale. Ciò sarà verificato nell'ambito della discussione orale in sede di verifica finale.

Abilità comunicative

L'allievo avrà acquisito la capacità di comunicare ed esprimere con buona proprietà di linguaggio gli aspetti fondamentali relativi all'analisi elettromagnetica in regime stazionario e quasistazionario ed all'analisi dei circuiti lineari in qualunque regime, offrendo anche soluzioni standard in contesti specializzati. L'acquisizione delle abilità comunicative da parte dello studente sarà verificata, durante l'esame finale, tramite la discussione orale in sede di prova finale.

Capacità d'apprendimento

L'allievo sarà in grado di:

- affrontare lo studio dei dispositivi elettromagnetici e delle macchine elettriche tipicamente impiegati nell'ingegneria elettrica ed avrà acquisito gli elementi per approfondire i criteri e le modalità connesse con la loro progettazione di massima;
- affrontare lo studio dei sistemi elettrici di potenza con particolare riferimento agli impianti elettrici nelle applicazioni civili e industriali del terziario;
- affrontare lo studio dei sistemi elettronici.

La capacità di apprendimento sarà verificata nel corso della prova finale nell'ambito della quale lo studente, darà prova della consapevolezza raggiunta e della capacità critica di analisi e sintesi degli aspetti teorici e applicativi della disciplina studiata.

OBIETTIVI FORMATIVI

- Sviluppo delle conoscenze e dell'intuito professionale nel campo dell'elettromagnetismo applicato
- Capacità di risolvere circuiti semplici in qualunque regime e di eseguire bilanci di potenza e valutazione del rendimento elettrico

ORE FRONTALI	LEZIONI FRONTALI
18	I modelli analitici e circuitali del campo elettromagnetico e della conduzione, per l'analisi in regime stazionario, quasi stazionario e dinamico. Le equazioni di Maxwell.
24	Principi, teoremi e metodi per l'analisi dei circuiti elettrici lineari in regime

	stazionario, in transitorio ed in regime periodico sinusoidale, nel dominio del tempo e nel dominio della frequenza. Impiego della trasformata di Laplace.
10	Funzioni di rete; condizioni di risonanza e caratterizzazione del comportamento filtrante di circuiti passivi. Caratterizzazione dei circuiti 2-porte.
4	Materiali magnetici; circuiti magnetici.
10	Fenomeni d'induzione, azioni elettrodinamiche e principi di funzionamento dei convertitori elettromeccanici.
4	I sistemi trifase: proprietà e metodi generali di analisi.
70	Totale lezioni
	ESERCITAZIONI
20	Applicazione dei metodi di analisi dei circuiti elettrici lineari nel dominio del tempo ed in regime sinusoidale.
7	Funzioni di rete; condizioni di risonanza e caratterizzazione del comportamento filtrante di circuiti passivi. Caratterizzazione dei circuiti 2-porte. Applicazioni relative alla trasformata di Laplace per l'analisi di circuiti lineari dinamici.
5	Analisi dei circuiti magnetici.
3	Fenomeni d'induzione, azioni elettrodinamiche e principi di funzionamento dei convertitori elettromeccanici.
3	Analisi di circuiti trifase.
38	Totale esercitazioni
TOTALE: 108	

TESTI DI RIFERIMENTO	 M. Guarnieri, A. Stella: "Principi ed Applicazioni di Elettrotecnica" volume primo – Edizioni Progetto Padova, 2002. R. Schifani, S. Farruggia Bonura: "Fondamenti di Elettrotecnica – Teoria di base dei circuiti elettrici" – Hoepli, 2013 R Perfetti: "Circuiti elettrici" - Zanichelli, 2012 M. D'Amore: "Elementi di Elettrotecnica - Campi e circuiti" - Edizioni Scientifiche Siderea, 1995. G. Martinelli, M. Salerno: "Fondamenti di Elettrotecnica - Circuiti lineari e permanenti" - voll. I e II, Ed. Siderea, 1996. C. Desoer, E. Kuh: "Fondamenti di teoria dei circuiti" - Edizioni Franco Angeli, 2001. V. Daniele, A. Liberatore, R. D. Graglia, S. Manetti: "Elettrotecnica" - Monduzzi Editore, 1996. Liberatore, S. Manetti, M.C. Piccirilli, A. Reatti: "Circuiti elettrici ed elettronici - Esercizi commentati e risolti" – Progetto Leonardo, Bologna, 2003. M. Guarnieri, G. Malesani: Elettromagnetismo Stazionario e quasi stazionario - Ed. Progetto Padova, 2002. Esercitazioni proposte dal docente, disponibili sul portale studenti unipa
-------------------------	--