SCUOLA	Scienze di Base e Applicate
ANNO ACCADEMICO	2014/2015
CORSO DI LAUREA MAGISTRALE	Fisica (Codice: 2020)
INSEGNAMENTO	Metodi Matematici per la Fisica
TIPO DI ATTIVITÀ	Affine
AMBITO DISCIPLINARE	Attività formative affini o integrative
CODICE INSEGNAMENTO	5076
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	
SETTORI SCIENTIFICO DISCIPLINARI	MAT/07
DOCENTE RESPONSABILE	Vincenzo Sciacca
	Ricercatore
	Università di Palermo
CFU	6
NUMERO DI ORE RISERVATE ALLO	94
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	56
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Nessuna
ANNO DI CORSO	primo
SEDE DI SVOLGIMENTO DELLE	Dipartimento di Scienze Fisiche e Astronomiche,
LEZIONI	Via Archirafi 36, Aula E
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in aula,
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Scritta, Prova Orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Primo semestre
CALENDARIO DELLE ATTIVITÀ	Secondo il calendario approvato dal CdS
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Lunedì 12.00-13.30
STUDENTI	Mercoledì 12.00-13.30

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Gli studenti acquisiranno le seguenti conoscenze:

- -Elementi di teoria degli spazi di Hilbert e di teoria delle distribuzioni.
- -Elementi di teoria spettrale degli operatori e della trasformata di Fourier.
- -Teoria di Sturm-Liouvile, funzioni ortogonali.
- -Le soluzioni fondamentali delle equazioni di Laplace, del calore e delle onde.
- -Rappresentazione delle soluzioni di alcune equazioni della fisica-matematica in termini di autofunzioni.

Capacità di applicare conoscenza e comprensione

Gli studenti sapranno padroneggiare tecniche di soluzione di equazioni differenziali ordinarie con punti di singolarità; risolvere alcune fra le equazioni differenziali alle derivate parziali lineari più comuni nella fisica; usare i polinomi ortogonali.

Autonomia di giudizio

Gli studenti acquisiranno la capacità di riconoscere, la più appropriata metodologia per l'analisi qualitativa di alcuni modelli fisico-matematici usati nella descrizione dei fenomeni fisici.

Abilità comunicative

Gli studenti sapranno mettere i risultati trovati in una forma tale che l'informazione sia facilmente fruibile anche attraverso l'uso di grafici esplicativi e di limiti fisicamente motivati.

Capacità d'apprendimento

Scopo ideale del corso è anche quello di consentire allo studente di accedere a una porzione significativa della letteratura specialistica sui metodi matematici avanzati per la fisica e per le scienze.

OBIETTIVI FORMATIVI DEL MODULO

L'obiettivo del corso è quello di fornire agli studenti i fondamenti per un approccio rigoroso ai problemi matematici che tipicamente si incontrano nella descrizione quantitativa dei processi fisici.

MODULO	DENOMINAZIONE DEL MODULO	
ORE FRONTALI	LEZIONI FRONTALI	
8	Teoria delle distribuzioni. Convergenza di successioni di distribuzioni. Serie di	
	Fourier e trasformata di Fourier. Soluzione di un'equazione differenziale nel	
	senso delle distribuzioni. Il concetto di soluzione fondamentale.	
8	Equazioni differenziali ordinarie con singolarità. Il metodo di Frobenius. La	
	teoria di Sturm-Liouville. Autofunzioni. Funzioni speciali.	
8	Spazi di Hilbert. Insiemi completi. Operatori chiusi. Operatori autoaggiunti.	
	Operatori compatti. Lo spettro di un operatore.	
8	Equazioni differenziali alle derivate parziali. L'equazione di Laplace, la	
	soluzione fondamentale. L'equazione di diffusione, la soluzione fondamentale.	
	L'equazione delle onde. Separazione delle variabili.	
	ESERCITAZIONI	
3	Esercizi ed esempi sulla convergenza di distribuzioni e sulle delte-sequenze	
3	Esercizi ed esempi sulle serie e le trasformate di Fourier.	
3	Esercizi sulla determinazione della funzione di Green per operatori	
	differenziali del secondo ordine.	
2	Applicazioni della teoria delle distribuzioni alla soluzione delle equazioni	
	differenziali alle derivate parziali.	
3	Esercizi sull'applicazione delle serie e sulle trasformate di Fourier alla	
	soluzione di equazioni differenziali alle derivate parziali.	
3	Esercizi sulla determinazione dell'aggiunto di un operatore e dello spettro di	
	un operatore.	
2	Esercizi sul metodo di soluzione per serie di equazioni differenziali.	
3	Esercizi ed applicazioni delle funzioni speciali.	
2	Risoluzione di problemi per la preparazione alla prova finale	
TESTI	G.B.: Hirkon, 11.5. Webbi. Hiddle Milliant Carlo and John Thybre Libe viet	
CONSIGLIATI	P. Dennery, A. Krzywicki: Mathematics for Physicists, Dover	
	I.Stakgold: Green's Functions and Boundary Value Problems, Wiley	
	W.A.Strauss: Partial Differential Equations, an introduction, Wiley	