FACOLTÀ	Scienze MM.FF.NN.
ANNO ACCADEMICO	2013/2014 e 2014/15
CORSO DI LAUREA MAGISTRALE	Matematica
INSEGNAMENTO	Teorie e Tecniche per l'Analisi di Immagini
TIPO DI ATTIVITÀ	Affine
AMBITO DISCIPLINARE	Attività formative affini o integrative
CODICE INSEGNAMENTO	16522
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	1
SETTORI SCIENTIFICO DISCIPLINARI	INF/01
DOCENTE RESPONSABILE	Domenico Tegolo
(MODULO 1)	Professore Associato
	Università di Palermo
CFU	6
NUMERO DI ORE RISERVATE ALLO	102
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	48
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Nessuna
ANNO DI CORSO	Primo e Secondo per il Manifesto 2013-14
SEDE DI SVOLGIMENTO DELLE	Dipartimento di Matematica e Informatica,
LEZIONI	Via Archirafi n.34
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali.
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Orale.
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Secondo semestre
CALENDARIO DELLE ATTIVITÀ	Consultabile al sito:
DIDATTICHE	http://www.scienze.unipa.it/specmatematica/spe
	<u>cmate/</u>
ORARIO DI RICEVIMENTO DEGLI	Lunedì dalle 15 alle 17
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI:

Conoscenza e capacità di comprensione

- Acquisizione di metodologie avanzate per l'analisi di immagini Biomediche, acquisizione dei concetti fondamentali per la ricerca automatica di specifici elementi patologici in immagini mediche.

Capacità di applicare conoscenza e comprensione

- Capacità di applicare tali conoscenze a dati reali, individuazione di algoritmi per specifici problemi in analisi di immagini biomediche.

Autonomia di giudizio

- Essere in grado di valutare la bontà di metodi per l'estrazione di caratteristiche da dati immagini e per il loro trattamento per possibili classificazioni.

Abilità comunicative

- Capacità di applicare le metodologie apprese ai svariati campi dell'analisi dei dati immagini in biomedicina.

Capacità d'apprendimento

- Capacità di aggiornamento con la consultazione delle pubblicazioni scientifiche proprie del settore dell'analisi automatica di dati immagine e successivo riconoscimento di forme.

OBIETTIVI FORMATIVI DELL'INDEGNAMENTO

L'insegnamento si propone di fornire allo studente i concetti teorici e applicativi per la definizioni e la realizzazione di metodi e di algoritmi per l'analisi automatica di immagini biomediche.

INSEGNAMENTO	Teorie e Tecniche per l'Analisi di Immagini
ORE FRONTALI	LEZIONI FRONTALI
2	La Natura delle immagini biomediche: la temperatura del corpo come immagine, immagini al microscopio, immagini X-ray, immagini di risonanza magnetica.
4	Rimozione di Artefatti: Caratterizzazione degli artefatti, dominio spaziale e filtri basati su statistiche, filtri adattivi, filtri sul dominio delle frequenze.
8	Image Enhancement: operazioni digitali su immagini biomediche, trasformazioni su immagini a livelli di grigio, trasformazioni su dati istogramma, filtri basati sulla convoluzione, filtri omomorfici, filtri sullo spazio delle frequenze, enhancement basati sul contrasto.
8	Individuazione di zone di interesse: Binarizzazione Threshold, individuazione di punti isolati, individuazione di bordi e corner, segmentazione e region growing, metodi per il miglioramento del contorno e stima della regioni di interesse.
8	Analisi delle forme: rappresentazione di forme e contorni, codici per la rappresentazioni di forme, modelli polinomiali per la modellazione di contorni, skeleton, caratterizzazione delle forme attraverso parametri essenziali, descrittori di Fourier.
2	Analisi delle tessiture: modelli per la generazione di texture analisi statistica delle texture, segmentazione e analisi strutturale delle tuxture.
6	Ricostruzione di immagini dalle proiezioni: proiezioni geometriche, Teorema Fourier slice, tecniche di ricostruzione algebriche, approssimazione con il metodo di Kaczmarz.
8	Metodi e algoritmi di cluster: cluster gerarchici, cluster partizionali, software per il cluster, metodologie.
2	Processamento di immagini, Segmentazione di immagini con cluster, Segmentazione di immagini multispetrali, Registrazioni di immagini
TESTI	- R. M Rangayyan, Biomedical Image Analysis , CRC Press.
CONSIGLIATI	- A.Meyer-Baese - Pattern Recognition in Medical Imaging ,
	Elsevier.
	EISCVICI.