FACOLTÀ	Scienze MM.FF.NN.
ANNO ACCADEMICO	2015/2016
CORSO DI LAUREA	Scienze Fisiche
INSEGNAMENTO	Metodi Matematici e Numerici per la Fisica
TIPO DI ATTIVITÀ	Affine
AMBITO DISCIPLINARE	Discipline matematiche e informatiche
CODICE INSEGNAMENTO	10504
ARTICOLAZIONE IN MODULI	SI
NUMERO MODULI	2
SETTORI SCIENTIFICO DISCIPLINARI	MAT/05
DOCENTE RESPONSABILE	Fabio Reale
METODI NUMERICI (MODULO 1)	Professore Associato
	Università di Palermo
DOCENTE RESPONSABILE	Emilio Fiordilino
METODI MATEMATICI (MODULO 2)	Professore Associato
	Università di Palermo
CFU	9 (5+4)
NUMERO DI ORE RISERVATE ALLO	137
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	88 (52+36)
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Nessuna
ANNO DI CORSO	Terzo
SEDE DI SVOLGIMENTO DELLE	Aula D, Dipartimento di Fisica, sede Via
LEZIONI	Archirafi 36
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali. Esercitazioni in aula.
	Esercitazioni in laboratorio di informatica.
MODALITÀ DI FREQUENZA	Obbligatoria esclusivamente per le esercitazioni
	in laboratorio
METODI DI VALUTAZIONE	Prova scritta, valutazione degli elaborati delle
	esperienze di laboratorio e prova orale. Prova in itinere ^(*)
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	I e II semestre
CALENDARIO DELLE ATTIVITÀ	Secondo calendario stabilito dal CdS
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Reale Lunedì 12:30 – 13:30
STUDENTI	Fiordilino Lunedì 8:30 – 9:30

^(*) è prevista una prova in itinere alla fine del I semestre, durante il periodo dedicato agli esami di profitto, da programmare in Consiglio di Corso di Studio.

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Competenza e padronanza base sugli argomenti di analisi numerica. Conoscenza e abilità nell'applicazione a problemi fisici degli strumenti analitici sviluppati.

Capacità di applicare conoscenza e comprensione

Progettazione, implementazione e testing di algoritmi numerici in programmi in linguaggio C. Valutazione degli ambiti di validità dei metodi e degli errori numerici.

Creazione e applicazione di modelli matematici semplici a problemi fisici con particolare cura alla correttezza del procedimento e della soluzione.

Applicazione di tecniche di analisi complessa nella risoluzione di problemi fisici; uso di trasformate di Fourier e sviluppo in polinomi ortogonali nello studio di alcuni problemi di rilevanza fisica; le distribuzioni e la *delta* di Dirac in alcuni problemi di rilevanza fisica.

Autonomia di giudizio

Acquisizione di strumenti di valutazione oggettiva dei programmi attraverso test di validazione.

Valutazione e selezione di diverse soluzioni numeriche secondo il problema da affrontare.

Valutazione ragionata del metodo di approccio ai problemi matematici.

Capacità di individuazione fra modelli matematici quello corretto e ben definito.

Approccio matematicamente elegante ai problemi fisici.

Abilità comunicative

Acquisizione di abilità di presentazione attraverso risposte per esteso a quesiti specifici formulati nel corso delle prove in itinere.

Esposizione chiara e fondata del problema da risolvere, delle ipotesi formulate e del metodo seguito nella soluzione.

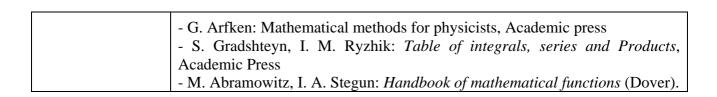
Capacità d'apprendimento

Capacità di applicare i concetti di informatica nell'implementazione pratica di algoritmi e i concetti matematici nella soluzione elegante dei problemi.

OBIETTIVI FORMATIVI DEL MODULO I

Lo scopo del modulo è di fornire allo studente le competenze e conoscenze che lo rendano in grado di affrontare autonomamente i principali problemi dell'analisi numerica applicati alla Fisica. Il modulo consiste di un ciclo di lezioni teoriche e di una serie di esercitazioni pratiche al computer, nelle quali gli studenti risolvono un problema numerico attraverso lo sviluppo ed esecuzione di un programma e l'analisi dei risultati ottenuti. Le esercitazioni di laboratorio, svolte in itinere, sono valutate ai fini della prova d'esame.

MODULO 1	METODI NUMERICI
ORE FRONTALI	LEZIONI FRONTALI
1	Introduzione: Rappresentazione numerica ed errori di troncamento.
3	Equazioni non-lineari: Metodi iterativi semplici: funzioni generatrici di sequenza, test di convergenza. Tasso di convergenza. Metodo di bisezione.
	Metodo di Newton-Raphson.
4	Interpolazione: Notazioni e operatori alle differenze. Formule alle differenze finite. Differenze divise. Cenni su formule alle differenze centrate
3	Integrazione numerica: formule alla Newton-Cotes e composite. Regola del trapezio. Regola di Simpson. Integrazioni aperte.
4	Equazioni differenziali: Generalità: Problemi al valore iniziale. Metodi a passo multiplo predictor-corrector. Metodi di partenza. Precisione dei metodi a passo multiplo: errore di troncamento, convergenza, stabilità. Metodi a passo singolo di Runge-Kutta
4	Sistemi di equazioni lineari: Metodo di sostituzione. Metodo di eliminazione di Gauss. Pivoting. Metodo di fattorizzazione LU. Metodi iterativi.
3	Metodi Monte Carlo: Concetto di simulazione. Numeri Random e Pseudorandom. Metodo di trasformazione. Metodo della look-up table. Metodo del rigetto. Metodi per distribuzioni gaussiane: Metodo di Box-Mueller.
2	Cenni su Calcolo parallelo: Il concetto. Approcci: farming, pipelining, decomposition. Memoria condivisa o distribuita. Speedup, efficienza, tempi di comunicazione. Parallelizzazione di programmi: message passing (MPI).
	ESERCITAZIONI
2	Equazioni non-lineari: Esempi e programmi.


2	Interpolazione: Esempi e programmi
2	Integrazione numerica: Esempi e programmi.
2	Equazioni differenziali: Esempi e programmi.
2	Sistemi di equazioni lineari: Esempi e programmi
2	Metodi Monte Carlo: Esempi e programmi.
	ESERCITAZIONI DI LABORATORIO
4	Equazioni non-lineari: Esercitazione in laboratorio.
3	Integrazione numerica: Esercitazione in laboratorio.
3	Equazioni differenziali: Esercitazione in laboratorio.
3	Sistemi di equazioni lineari: Esercitazione in laboratorio.
3	Metodi Monte Carlo: Esercitazione in laboratorio.
TESTI CONSIGLIATI	- J. Murphy, D. Ridout, B. McShane, Numerical Analysis, Algorithms, and Computation, Ellis Horwood, 1988.
	- P.R. Bevington, D.K. Robinson, Data Reduction and Error Analysis for the
	Physical Sciences, McGraw-Hill, 1992.
	- A. Rea, An Introduction to Parallel Computing, The Queen's University of
	Belfast, 1995.

OBIETTIVI FORMATIVI DEL MODULO 2

Lo scopo del modulo è di fornire allo studente le competenze e l'abilità che gli permettano di applicare i principali strumenti dell'analisi teorica e matematica alla Fisica.

Il modulo consiste di lezioni in cui i principali strumenti matematici vengono acquisiti ed esercitazioni applicate a problemi fisici. Particolare cura sarà messa a che lo studente risolva un problema fisico attraverso lo sviluppo di un modello teorico in modo completo.

MODULO 2	METODI MATEMATICI	
ORE FRONTALI	LEZIONI FRONTALI	
2	Introduzione e soluzione un problema classico in modo avanzato: il pendolo semplice e suo moto nel caso di grandi oscillazioni; gli integrali ellittici di prima e seconda specie: forma di Legendre e di Jacobi. Necessità delle funzioni speciali	
6	Funzioni a più valori; punti e tagli di diramazione; integrazione di funzioni complesse a più valori.	
6	Spazi vettoriali a dimensione infinita; introduzione alla teoria della misura, misura secondo Lebesgue; spazio di funzioni a quadrato integrabile.	
7	Teoria dei polinomi ortogonali classici; trasformate di Fourier. Cenni di trasformate di Fourier a corto raggio.	
3	Introduzione alla teoria delle distribuzioni.	
	ESERCITAZIONI	
12	Esercizi di integrazione di funzioni complesse a più variabili. Sviluppo di funzioni semplici in serie di polinomi classici. Sviluppo di funzioni in serie di Fourier. Scopo delle esercitazioni è quello di fornire allo studente le tecniche per svolgere correttamente e fino alla fine i <i>semplici</i> problemi di esame.	
TESTI CONSIGLIATI	- P. Dennery, A. Krzywicki: <i>Mathematics for Physicists</i> , Dover - K. F. Riley, M. P. Hobson, S. J. Bence: <i>Mathematical methods for physics and engineering</i> , (Cambridge)	

