FACOLTÀ	Scienze MM.FF.NN.
ANNO ACCADEMICO	2013/2014
CORSO DI LAUREA (o LAUREA	LM in Biotecnologie per l'Industria e la Ricerca
MAGISTRALE)	Scientifica
INSEGNAMENTO	Biotecnologie applicate
TIPO DI ATTIVITÀ	Affini o integrative
AMBITO DISCIPLINARE	Affini o integrative
CODICE INSEGNAMENTO	14520
ARTICOLAZIONE IN MODULI	SI
NUMERO MODULI	2
SETTORI SCIENTIFICO	BIO/05- BIO/06
DISCIPLINARI	210,00 210,00
DOCENTE RESPONSABILE	Aiti Vizzini
(MODULO 1)	Ricercatore
	Università di Palermo
DOCENTE COINVOLTO	Patrizia Cancemi
(MODULO 2)	Ricercatore
	Università di Palermo
CFU	6
NUMERO DI ORE RISERVATE ALLO	102
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	48
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Nessuna
ANNO DI CORSO	I
SEDE DI SVOLGIMENTO DELLE	Aula 6 Dpt. Biologia Cellulare e dello Sviluppo
LEZIONI	
ORGANIZZAZIONE DELLA	Lezioni frontali
DIDATTICA	
MODALITÀ DI FREQUENZA	Consigliata
METODI DI VALUTAZIONE	Prova Orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Secondo semestre
CALENDARIO DELLE ATTIVITÀ	Consulatare il Calendario didattico sul sito web
DIDATTICHE	del CdL
	(http://www.scienze.unipa.it/biotecnologieindus
OR A DIO DI DICENTATENTO DECLI	triaricerca/biotecnologieindric/)
ORARIO DI RICEVIMENTO DEGLI	Dr.ssa A. Vizzini: Dipartimento Scienze e
STUDENTI	tecnologie Biologiche, Chimiche Farmaceutiche
	Via Archirafi, 18 Palermo
	Lunedi 9.30-11.30 o per appuntamento
	Tel. 091/23891830 e-mail aiti.vizzini@unipa.it Dr.ssa P. Cancemi: Dipartimento Scienze e
	tecnologie Biologiche, Chimiche Farmaceutiche
	Viale delle Scienze, ed 18 Palermo
	Mercoledì 10.00-12.00 o per appuntamento
	Tel. 091/6806418 e-mail
	patrizia.cancemi@unipa.it
	pan-Limenteenin C milipuit

RISULTATI DI APPRENDIMENTO ATTESI

Si riferiscono all'insegnamento e non ai singoli moduli che lo compongono.

Vanno espressi utilizzando i descrittori di Dublino

Conoscenza e capacità di comprensione

Conoscenza delle basi molecolari di specifici fenotipi cellulari e dei meccanismi coinvolti in patologie umane.

Apprendimento delle più innovative metodologie biotecnologiche che prevedono l'uso di modelli animali e cellulari per lo studio dell'espressione genica e proteomica e per la produzione e validazione di nuovi farmaci e biopolimeri e molecole bioattive.

Capacità di applicare conoscenza e comprensione

Applicazione consapevole delle conoscenze acquisiste per la risoluzione di problematiche scientifiche legate alle biotecnologie animali e cellulari. Interpretazione critica dei risultati scientifici di letteratura.

Autonomia di giudizio

Capacità di integrazione delle conoscenze acquisite per la formulazione di giudizi che includono le responsabilità sociali ed etiche collegate all'applicazione delle metodologie biotecnologiche.

Abilità comunicative

Capacità di esporre i risultati degli studi biotecnologici ed essere in grado di sostenere l'importanza ed evidenziare le ricadute degli interventi delle nuove biotecnologie.

Capacità d'apprendimento

Lo studente deve essere in grado di intraprendere studi futuri in perfetta autonomia, essere in grado di aggiornare le competenze acquisite seguendo i progressi scientifici e tecnologici.

OBIETTIVI FORMATIVI DEL MODULO 1

Il corso si propone di offrire una panoramica delle più innovative applicazioni delle biotecnologie che prevedono l'uso dei principali modelli animali per lo studio dell'espressione genica, in immunologia, studio delle patologie umane e in campo applicativo per la produzione e validazione di nuovi farmaci e la produzione di biopolimeri e molecole bioattive.

MODULO	BIOTECNOLOGIE ANIMALI
ORE FRONTALI	LEZIONI FRONTALI
2h	Applicazioni in Biotecnologia animale della bioluminescenza e della chemioluminescenza.
2h	Molecular imaging, la tomografia ad emissione di positroni (PET) e tomografia ad emissione fotonica (SPET).
4h	La tecnologia del topo reporter: indicatori bioluminescenti per la valutazione dell'espressione genica <i>in vivo</i> ; nuovo approccio per analizzare gli effetti di nuovi farmaci; monitoraggio bioluminescente di xenotrapianti, applicazioni in immunologia.
2h	Sviluppo di modelli animali utilizzati per lo studio dell'effetto d'agenti tossici e da biosensori
2h	Conigli transgenici come modello per lo studio di malattie umane e come risorsa di proteine ricombinanti biologicamente attive
4h	Produzione di proteine d'interesse farmacologico e biomedico da invertebrati. Peptici antimicrobici una naturale alternativa agli antibiotici.

4h	Zebrafish come sistema modello per lo screening e la validazione di farmaci e lo studio di malattie umane.
2h	Zebrafish come modello genetico per lo studio di organismi marini importanti ai fini dell'acquacoltura.
2h	Principali applicazioni biotecnologiche delle tossine del veleno del ragno Loxosceles genes e della tela del ragno per la produzione di biopolimeri.
	ESERCITAZIONI
TESTI CONSIGLIATI	Appunti del corso. Articoli scientifici. Il materiale verrà fornito agli studenti durante il corso.

OBIETTIVI FORMATIVI DEL MODULO 2

Il corso si propone di fornire allo studente conoscenze scientifiche a livello molecolare delle proteine coinvolte nel mantenimento del fenotipo cellulare. Verranno analizzati i meccanismi molecolari della progressione tumorale. Inoltre, saranno approfondite le metodologie proteomiche e la loro applicazione in ambito biotecnologico-oncologico. Lo studente sarà in grado di integrare le nozioni teoriche e pratiche acquisite e di metterle in relazione con le altre discipline del corso di laurea.

MODULO	CITOLOGIA MOLECOLARE
ORE FRONTALI	LEZIONI FRONTALI
2	Fenotipo epiteliale
6	Molecole coinvolte nel mantenimento della polarità epiteliale
2	Lipid raft e meccanismi di trasduzione del segnale
6	Fenotipo tumorale e basi molecolari delle metastasi
8	Metodologie proteomiche e applicazioni allo studio del fenotipo tumorale
	ESERCITAZIONI
TESTI CONSIGLIATI	Articoli scientifici del settore e presentazioni power point forniti durante lo svolgimento del corso.