FACOLTÀ	Ingegneria
ANNO ACCADEMICO	2012/2013
CORSO DI LAUREA MAGISTRALE	Ingegneria dell'Automazione
INSEGNAMENTO	Controlli Automatici II
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Ingegneria dell'Automazione
CODICE INSEGNAMENTO	02193
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	
SETTORI SCIENTIFICO DISCIPLINARI	ING-INF/04
DOCENTE RESPONSABILE	Adriano Fagiolini, R.U.
	Università di Palermo
CFU	6
NUMERO DI ORE RISERVATE ALLO	90
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	60
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Controlli Automatici
ANNO DI CORSO	I
SEDE DI SVOLGIMENTO DELLE	Consultare il sito www.ingegneria.unipa.it
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, esercitazioni in aula
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova scritta ed eventuale prova orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Consultare il sito www.ingegneria.unipa.it
CALENDARIO DELLE ATTIVITÀ	Consultare il sito www.ingegneria.unipa.it
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Tutti i giorni di lezione
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione (knowledge and understanding):

• Il corso di Controlli Automatici II è un corso avanzato nell'ambito dell'analisi dei sistemi dinamici non lineari e del progetto di sistemi di controllo per sistemi dinamici lineari e non lineari. E' infatti rivolto agli allievi dei Corsi di Laurea Magistrale, con particolare riferimento al Corso di Laurea Magistrale in Ingegneria dell'Automazione. Lo studente, al termine del corso, avrà acquisito un nuovo approccio per affrontare e risolvere problemi ingegneristici di notevole importanza dal punto di vista applicativo. Particolarmente rilevanti sono i metodi di sintesi ottima per sistemi multi-variabili e lo studio della stabilità per modelli non lineari mediante il metodo diretto di Lyapunov.

Conoscenza e capacità di comprensione applicate (applying knowledge and understanding):

• Lo studente sarà in grado di utilizzare le metodologie acquisite per il progetto nel dominio del tempo di controllori per sistemi SISO (a un solo ingresso e una sola uscita) e per sistemi MIMO (più ingressi e più uscite), lineari e non lineari, in presenza anche di vincoli sul controllo e sullo stato. Sarà. Inoltre, in grado di effettuare lo studio della stabilità per modelli lineari e non lineari utilizzando il metodo diretto di Lyapunov.

Autonomia di giudizio (making judgements):

• Lo studente sarà capace di individuare le proprietà del modello sotto studio e di valutare le azioni da intraprendere per conseguire gli obiettivi finali del suo studio che sono quelli di costruire un sistema di controllo che permetta di soddisfare assegnate specifiche di progetto.

Abilità comunicative (communication skills):

• Lo studente sarà anche in grado di collaborare con altri colleghi progettisti di altri corsi di laurea e di comprendere e soddisfare le esigenze degli utilizzatori.

Capacità di apprendere (learning skills):

• Il corso si pone anche l'obiettivo di stimolare l'interesse dello studente per l'approccio di tipo sistematico utilizzato nella trattazione dei vari argomenti oggetto del corso stesso. Lo studente che acquisirà tale metodologia di studio sarà sicuramente in grado di affrontare e risolvere problemi mai trattati nei corsi frequentati.

OBIETTIVI FORMATIVI

Gli obiettivi del corso sono quelli dello studio dei sistemi reali mediante un approccio basato su di un modello matematico del sistema stesso. Il corso in questione si pone come obiettivo quello di studiare con un'unica metodologia i sistemi SISO e MIMO, i sistemi lineari e non lineari. La metodologia in questione si basa sulla descrizione matematica del sistema (modello matematico).

ORE FRONTALI	LEZIONI FRONTALI
10	Sistemi di controllo non lineari: metodo del piano delle fasi, metodo della
	funzione descrittiva, metodo di Tsypkin.
10	Stabilità dei sistemi non lineari: metodo indiretto di Lyapnuov, funzioni
	definite positive, metodo diretto di Lyapunov, teoremi di instabilità e teoremi
	inversi, velocità di convergenza, insiemi invarianti, metodo di Krasowskii,
	metodo del gradiente variabile.
16	Teoria del controllo ottimo: calcolo delle variazioni, Principio del Minimo di
	Pontryagin, problemi di controllo in tempo minimo, problemi con vincoli sul
	controllo e/o sullo stato del sistema, controllo ottimo di sistemi lineari con
	indici di prestazione quadratici (LQR).
	ESERCITAZIONI
3	Calcolo della funzione descrittiva di alcune non linearità simmetriche.
4	Applicazioni del metodo del piano delle fasi.
2	Applicazioni del metodo di Tsypkin.
3	Applicazioni del metodo diretto di Lyapunov.
3	Applicazioni del metodo di Krasowskii.
3	Posizionamento in tempo minimo di una massa inerziale con vincoli sul
	controllo.
3	Posizionamento in tempo minimo di una massa inerziale, con vincoli sul
	controllo e sullo stato.
3	Progetto del regolatore LQR in Matlab.
TESTI	Slotine, Li; Applied Nonlinear Control; Prentice Hall;
CONSIGLIATI	• Athans, Falb; Optimal Control – An Introduction to the Theory and its
	Applications; Dover.