STRUTTURA	Scuola Politecnica - DICGIM
ANNO ACCADEMICO	2016-17
CORSO DI LAUREA	Ingegneria Chimica
INSEGNAMENTO	Chimica Applicata
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Ingegneria chimica
CODICE INSEGNAMENTO	01814
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	
SETTORI SCIENTIFICO DISCIPLINARI	Ing-Ind/22
DOCENTE RESPONSABILE	Vincenzo La Carrubba
	Professore Associato
	Università di Palermo
CFU	9
NUMERO DI ORE RISERVATE ALLO	144
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	81
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Chimica
ANNO DI CORSO	3°
SEDE DI SVOLGIMENTO DELLE	Consultare il sito politecnica.unipa.it
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in aula,
,	Esercitazioni in laboratorio
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Scritta + Prova Orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Consultare il sito politecnica.unipa.it
CALENDARIO DELLE ATTIVITÀ	Consultare il sito politecnica.unipa.it
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Martedì e giovedì, ore 15-17
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Conoscenza delle principali categorie di materiali per l'ingegneria e coscienza delle correlazioni tra composizione chimica, struttura e proprietà. Conoscenza dei parametri più significativi che caratterizzano l'acqua per usi civili e industriali, e dei processi di trattamento.

Conoscenza della natura chimica e delle proprietà chimico fisiche dei combustibili. Conoscenza dei principi teorici e delle pratiche di conduzione dei processi di combustione.

Capacità di applicare conoscenza e comprensione

Scelta dei materiali più idonei alla realizzazione di un manufatto in relazione alle sue caratteristiche e all'applicazione richiesta. Metodi di riconoscimento e caratterizzazione dei materiali sulla base delle loro proprietà.

Correlazioni proprietà struttura per i materiali, le acque e i combustibili.

Capacità di applicare le teorie a casi concreti.

Autonomia di giudizio

Capacità di riconoscere le caratteristiche, le proprietà e i metodi di lavorazione dei principali materiali di uso ingegneristico. Capacità di valutare la qualità delle acque scegliendo i trattamenti

più idonei in relazione all'applicazione. Conduzione dei processi di combustione industrialmente impiegati.

Abilità comunicative

Lo studente sarà in grado di comunicare con competenza e proprietà di linguaggio problematiche complesse relative alle proprietà fisico-chimiche dell'acqua, dei combustibili e le correlazioni proprietà struttura dei materiali anche in contesti specializzati.

Capacità d'apprendimento

Lo studente sarà in grado di affrontare in autonomia qualsiasi problematica relativa al trattamento delle acque naturali e industriali, al trattamento dei combustibili e alla scelta dei materiali, alla loro caratterizzazione ed all'ottimizzazione dei processi di trasformazione.

OBIETTIVI FORMATIVI

Fornire all'allievo ingegnere gli strumenti culturali per operare scelte di progetto e di conduzione di impianti, quali:

- Valutare la qualità di un'acqua ed eventualmente proporre processi ed apparecchiature per trattarla, in funzione dell'uso cui sarà destinata.
- Sovrintendere a processi di produzione di diverse categorie di materiali di interesse per l'ingegneria.
- Selezionare i materiali in funzione delle loro proprietà e della loro destinazione d'uso.
- Valutare la scheda tecnica di un combustibile ed effettuare calcoli stechiometrici e termodinamici sui processi di combustione.

ORE FRONTALI	LEZIONI FRONTALI
2	Parte introduttiva Introduzione ai materiali: metalli, polimeri e ceramici. Confronto tra le proprietà. Criteri per la scelta.
8	Metalli Legami chimici, cristallografia e reticoli di Bravais. Difetti e soluzioni. Numero di coordinazione. Impacchettamento atomico e densità. Solidificazione. Diagrammi di stato. Trasformazioni di fase. Microstrutture. Sistemi binari isomorfi. Sistemi eutettici e altri sistemi. Esempi di leghe metalliche.
6	Acciai e Ghise Diagramma Fe/C. Diagrammi TTT e CCT. Trattamenti termici e termochimici: tempra, annealing, carburazione, nitrurazione. Classificazione acciai e ghise. Produzione di acciai e ghise, altoforni.
	Cenni su altri metalli Indurimento per precipitazione.
2	Cenni su proprietà meccaniche Prova di trazione, modulo di Young, resilienza, durezza.
3	Cenni su ceramici e vetri Struttura, stato amorfo e cristallino, viscosità, lavorazione di ceramici e vetri.
8	Leganti Leganti aerei e idraulici, calce aerea, gesso, calce idraulica, cemento portland, altri tipi di cemento. Moduli. Produzione del cemento, usi e resistenza in opera. Calcestruzzo (cenni).
8	<u>Polimeri</u> Introduzione e caratteristiche. Stato solido, transizione vetrosa e stato cristallino. Metodi di lavorazione, estrusione e stampaggio ad iniezione. Cenni sulla viscoelasticità e curva master. Polimeri industriali e applicazioni.
10	Acqua introduzione, proprietà, caratteristiche e analisi. Durezza e addolcimento. Calce soda e scambio ionico. Altri trattamenti. Sedimentazione, coagulazione, flocculazione. Aerazione e degasazione chimica. Acque per usi speciali.

9	<u>Combustibili</u> Introduzione, combustione, entalpia e potere calorifico. Combustione completa ed incompleta. Fumi di combustione. Limiti di infiammabilità, temperatura di ignizione, temperatura teorica di combustione. Combustibili solidi, liquidi e gassosi. Derivati petroliferi, cracking e reforming. Combustibili gassosi, gas di gasogeno. Combustibili liquidi, numero di ottano e numero di cetano.
	ESERCITAZIONI
25	Metalli: indici di Miller e di direzione, calcolo della densità teorica, diagrammi di stato, TTT e CCT Leganti: calcolo dei moduli, calcimetro Polimeri: distribuzione pesi molecolari, determinazione della curva master Acqua: addolcimento calce e soda, sedimentazione Combustibili: calcolo volume fumi e temperatura teorica di combustione
TESTI CONSIGLIATI	William F. Smith, SCIENZA E TECNOLOGIA DEI MATERIALI, McGraw-Hill Cesare Brisi, CHIMICA APPLICATA, Ed. Levrotto-Bella (Combustibili: Cap.li 5-8) G. Polizzotti, "L'Acqua", Ed. Ambrosiana Slides fornite dal docente in formato elettronico