STRUTTURA	Scuola Politecnica - DICAM
ANNO ACCADEMICO	2015/16
CORSO DI LAUREA	Ingegneria Civile ed Edile
INSEGNAMENTO	Meccanica razionale
TIPO DI ATTIVITÀ	Di base
AMBITO DISCIPLINARE	Formazione scientifica di base
CODICE INSEGNAMENTO	04954
ARTICOLAZIONE IN MODULI	No
NUMERO MODULI	
SETTORI SCIENTIFICO DISCIPLINARI	MAT/07
DOCENTE RESPONSABILE	Da designare
CFU	9
NUMERO DI ORE RISERVATE ALLO	139
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	86
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Analisi matematica, geometria
ANNO DI CORSO	II
SEDE DI SVOLGIMENTO DELLE	Consultare il sito politecnica.unipa.it
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Scritta, Prova Orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Consultare il sito politecnica.unipa.it
CALENDARIO DELLE ATTIVITÀ	Consultare il sito politecnica.unipa.it
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Da definire
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Lo studente al termine del corso avrà acquisito metodologie generali per affrontare lo studio di sistemi meccanici. Lo studente alla fine del corso conoscerà i principali metodi per la modellizzazione matematica di sistemi meccanici allo scopo di determinare le condizioni di equilibrio ed il moto di un sistema complesso. Saprà inoltre derivare i modelli più consoni in funzione della fenomenologia fisica del problema.

Capacità di applicare conoscenza e comprensione

Lo studente sarà in grado di utilizzare gli strumenti matematici adatti per risolvere problemi di meccanica complessi; saprà comprendere i limiti dei modelli usati e quali modelli siano più indicati in determinati contesti.

Abilità comunicative

Lo studente, dopo aver costruito un modello matematico che descriva la statica o la dinamica di un sistema meccanico, sarà in grado di descrivere con competenza e criticismo le tecniche costruttive del modello e le metodologie risolutive dello stesso. Saprà inoltre collegare le nozioni apprese con gli argomenti appresi nei precedenti corsi studiati.

Capacità d'apprendimento

Lo studente sarà in grado di formulare in autonomia modelli matematici di sistemi meccanici e sarà in grado di apprendere ulteriori tecniche per studiare i modelli ottenuti.

OBIETTIVI FORMATIVI

Obiettivo del modulo è quello di fare acquisire allo studente i principi fondamentali per la trattazione matematica di un sistema materiale condizionato da precise leggi fisiche.

ORE FRONTALI	LEZIONI FRONTALI
1 Obiettivi del corso	
6 Definizione di vett	ore applicato e di sistema di vettori applicati. Risultante e momento di un
sistema di vettori	applicati. Legge di variazione del momento di un sistema di vettori
apllicati. Coppia	di vettori applicati. Momento di una coppia. Torsore. Equivalenza e
riducibilità di siste	
Poisson sulla riduc	ibilità. Trinomio invariante e riducibilità a torsori.
2 Cinematica del	punto materiale. Spazio-Tempo. Equazioni del moto. Velocità ed
	ri e vettoriale. Equivalenza tra delle descrizioni cinematiche.
	rve sghembe. Ascissa curvilinea. Triedro di Frenet e sua trattazione
	atura e cerchio osculatore. Moto centrale e formula di Binet, velocità
	ne matematica del moto centrale in coordinate polari. Composizione di
moti armonici e fig	
	pi rigidi. Terne assolute e solidali. Formula fondamentale dei moti rigide e
	n. Studio dei moti piani. Centro istantaneo di rotazione centro delle
	rema di Mozzi e moto locale nel tempo di un corpo rigido. Determinazione
	ediante approccio analitico e geometrico (teorema di Chasles).
	oti relativi relativi. Moto relativo di un punto. Definizione di moto di
	li velocità` angolare di trascinamento. Definizione di velocità' e di
	luta, relativa e di trascinamento. Principio di Galileo e teorema di Coriolis.
	e composizione delle velocità` angolari.
·	atto su curve e superfici. Condizioni di puro rotolamento e trascinamento
	o materiale. Massa e leggi fondamentali della dinamica, sistemi inerziali.
	ed inverso della dinamica. Esempi di problemi diretti della dinamica e
	zioni differenziali. Dinamica in sistemi non inerziali, dinamica terrestre.
	Classificazione dei vincoli e reazioni vincolari. Scomposizione dei vincoli.
= =	Morin. Trattazione matematica del moto di un punto materiale vincolati su
curve e superfici 6 Sistemi materiali.	Drawietà cometriche del haricantre Mamonti d'inarrie Operatore
d'inerzia. Ellissoide	Proprietà geometriche del baricentro. Momenti d'inerzia. Operatore
	he e vincoli. Momento della quantità di moto ed energia cinetica. Teorema
	ergia cinetica e per il momento angolare. Momento angolare orbitale e di
spin.	rgia emetica e per il momento angolare. Momento angolare oroltare e di
*	servative. Funzione potenziale ed energia potenziale. Lavoro su un
	efinizione di lavoro infinitesimo, possibile, virtuale ed elementare di una
	ecitazione concentrata distribuita. Definizione di potenza. Lavoro di una
	te su un sistema rigido. Componenti lagrangiane delle sollecitazione.
	mi. Equazioni cardinali. Teorema delle forze vive. Analisi qualitativa alla
	e centrali e potenziali associati. Corpo rigido con asse fisso e
	uilibratura del rotore.
	eriali. Spostamenti possibili e virtuali compatibili con vincoli. Teorema dei
	oro delle reazioni virtuali. Condizioni di equilibrio per sistemi materiali.
	iana. Equazioni di Lagrange, simmetrie ed integrali del moto. Trottole.
	range con vincoli anolomi. Caso delle forze attive conservative. Cenni di
	oniana. Piccole oscillazioni attorno le posizioni di equilibrio.
	ESERCITAZIONI
2 Sistemi vettori app	
2 Cinematica del pur	nto materiale
2 Corpi rigidi, moti c	li trascinamento e puro rotolamento

2	Problemi diretti ed indiretti della dinamica
3	Proprietà baricentro ed ellissoide d'inerzia
4	Statica dei sistemi materiali, determinazione delle reazione vincolari
4	Meccanica lagrangiana. Piccole oscillazioni attorno le posizioni di equilibrio
TESTI	Fabio Bagarello, Meccanica razionale per l'ingegneria, Mc Graw Hill
CONSIGLIATI	