FACOLTÀ	INGEGNERIA
ANNO ACCADEMICO	2015/2016
CORSO DI LAUREA	Ingegneria Meccanica
INSEGNAMENTO	Costruzioni Aerospaziali
TIPO DI ATTIVITÀ	Affine
AMBITO DISCIPLINARE	Attività formative affini o integrative
CODICE INSEGNAMENTO	02232
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	
SETTORI SCIENTIFICO DISCIPLINARI	ING-IND/04
DOCENTE RESPONSABILE	Alberto Milazzo
	Professore Associato
	Università di Palermo
CFU	6 (4 CFU lezione + 2 CFU esercitazione)
NUMERO DI ORE RISERVATE ALLO	98
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	52
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Scienza delle costruzioni
ANNO DI CORSO	Terzo
SEDE	Consultare il sito www.ingegneria.unipa.it
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali
	Esercitazioni in aula
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Consultare il sito www.ingegneria.unipa.it
CALENDARIO DELLE ATTIVITÀ	Consultare il sito www.ingegneria.unipa.it
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Martedì, Giovedì
STUDENTI	Ore 12-14

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Lo studente,in questo corso,acquisirà le conoscenze necessarie ad affrontare una progettazione di primo livello delle strutture fondamentali che costituiscono il velivolo. Di tali strutture sarà in grado di procedere alla verifica statica a robustezza ed alla conseguente verifica a deformabilità.

Capacità di applicare conoscenza e comprensione

Lo studente avrà acquisito conoscenze e metodologie per analizzare e risolvere problemi tipici della progettazione aeronautica di primo livello. Egli sarà in grado di modellare le principali strutture del velivolo e di effettuare scelte progettuali più vantaggiose

Autonomia di giudizio

Lo studente avrà acquisito una metodologia di analisi propria della progettazione ; attraverso tale metodologia egli sarà in grado di affrontare semplici problemi strutturali e prendere adeguate decisioni progettuali.

Abilità comunicative

Capacità di comunicare per mezzo di relazioni tecniche i risultati delle analisi condotte e delle soluzioni adottate nelle costruzioni aerospaziali. Lo studente avrà inoltre abilità comunicative sia a livello di interazione all'interno di un team sia a livello di interazione con tecnici specializzati.

Capacità d'apprendimento

Lo studente apprenderà i principi di base dell'analisi delle strutture in parete sottile proprie delle costruzioni aerospaziali. Tali principi gli consentiranno l'approfondimento degli argomenti a livello superiore attraverso la maturata capacità di accesso e comprensione di pubblicazioni specialistiche su metodologie avanzate di analisi e sintesi strutturale

OBIETTIVI FORMATIVI

Obiettivo del corso è fornire allo studente gli strumenti e le metodologie basilari necessarie all'analisi ed alla progettazione statica di elementi strutturali dell'aeromobile.

	COSTRUZIONI AEROSPAZIALI	
ORE FRONTALI	LEZIONI FRONTALI	
2	La geometria del velivolo	
4	Carichi agenti sull'aeromobile e tipologie strutturali.	
2	Diagramma di manovra e di raffica	
5	Le strutture a pareti sottili soggette a taglio	
3	Le strutture a pareti sottili soggette a torsione	
6	Fenomeni di instabilità dell'equilibrio elastico e modellazione del conseguente comportamento strutturale	
6	Progetto a robustezza e verifica a deformabilità di ala e fusoliera.	
	ESERCITAZIONI	
6	Esercitazioni sulla torsione e il taglio delle strutture in parete sottile	
4	Esercitazioni sull' instabilità dell'equilibrio elastico	
14	Calcolo a robustezza e verifica a deformabilità di ala e fusoliera.	

	-	T.H.G. Megson, Aircraft Structures for Engineering Students, Butterworth Heinemann,
TESTI		2003
CONSIGLIATI	_	E.F. Bruhn, Analysis and design of flight vehicle structures, Tristate Offset Company.
	_	Appunti e Dispense del corso