FACOLTÀ	INGEGNERIA
ANNO ACCADEMICO	2015-2016
CORSO DI LAUREA	INGEGNERIA ELETTRONICA
INSEGNAMENTO	ELETTRONICA DEI SISTEMI DIGITALI
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Ingegneria Elettronica
CODICE INSEGNAMENTO	02954
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	-
SETTORI SCIENTIFICO DISCIPLINARI	ING-INF/01
DOCENTE RESPONSABILE	GIUSEPPE COSTANTINO GIACONIA
	PROF. ASSOCIATO
	UNIVERSITA' DI PALERMO
CFU	6
NUMERO DI ORE RISERVATE ALLO	96
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	54
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	CALCOLATORI ELETTRONICI,
	ELETTRONICA I,
ANNO DI GODGO	ELETTRONICA II
ANNO DI CORSO	3
SEDE DI SVOLGIMENTO DELLE LEZIONI	Consultare il sito www.ingegneria.unipa.it
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in laboratorio
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova pratica finale e Prova Orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Consultare il sito www.ingegneria.unipa.it
CALENDARIO DELLE ATTIVITÀ	Consultare il sito www.ingegneria.unipa.it
DIDATTICHE ODA DIO DI DICEVIMENTO DECLI	Lym Man a Van and 11:00 12:20
ORARIO DI RICEVIMENTO DEGLI	Lun, Mer, e Ven. ore 11:00 12:30
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

• L'insegnamento si prefigge lo studio dei sistemi elettronici caratterizzati dalla proprietà della programmabilità, sia nel caso di sistemi complessi di porte logiche programmabili (FPGA), sia quando tale capacità deriva dall'esecuzione di istruzioni (microprocessori, microcontrollori). Si approfondiscono inoltre i dispositivi elettronici necessari per comprendere il funzionamento di un sistema a microprocessore (memorie, periferiche di I/O e relative tecniche di colloquio tra questi ultimi e l'unità centrale).

Capacità di applicare conoscenza e comprensione

• Lo studente maturerà la conoscenza delle tecniche di programmazione di FPGA mediante esperienza diretta in esercitazione. Lo studente acquisirà inoltre la capacità di analizzare il funzionamento di un sistema a microprocessore, sia negli aspetti circuitali che in quelli relativi alla sua programmazione.

Autonomia di giudizio (making judgements)

• Lo studente sarà in grado di analizzare autonomamente un sistema digitale di media complessità, comprendendo a fondo le funzionalità da esso esplicate a partire dal layout della scheda che lo contiene e dalla descrizione del firmware contenuto nella memoria di programma del sistema stesso.

Abilità comunicative (communication skills)

• Lo studente acquisirà la competenza per discutere dei sistemi elettronici programmabili maggiormente in uso nell'elettronica moderna in contesti scientifici di livello tecnico intermedio, forte della conoscenza delle soluzioni tecniche circuitali e firmware relative ai suddetti sistemi.

Capacità di apprendere (learning skills)

• L'insieme delle conoscenze maturate durante il corso sono in primo luogo rivolte a dotare lo studente degli strumenti essenziali per poter comprendere con pienezza la trattazione di argomenti più complessi, normalmente svolti all'interno del corso di Laurea Magistrale o che possono costituire casi di studio nel mondo del lavoro.

OBIETTIVI FORMATIVI

L'insegnamento si prefigge lo studio e l'analisi dei principali sistemi elettronici digitali programmabili: microprocessori, microcontrollori di piccolo taglio per applicazioni embedded ed FPGA. Si introduce lo studente ai metodi ed i linguaggi di programmazione a basso livello e di descrizione hardware delle strutture fondamentali quali macchine sequenziali ed FSM in VHDL.

Argomento (sintetico)	Lezioni/Seminari ed Esercitazioni
Introduzione ai sistemi digitali complessi. Analisi dei	2
sistemi in logica cablata e comparazione con quelli a logica	
programmata: vantaggi e svantaggi.	
Logiche Programmabili: introduzione e classificazioni	8/24
(PLD, PLA, PAL, FPGA). Descrizione architetturale e	
determinazione del flusso di progettazione digitale.	
Introduzione ed uso del linguaggio di descrizione VHDL e	
degli ambienti di sviluppo per FPGA.	

Configurazione classica di un sistema a microprocessore.	6
Descrizione della struttura a bus con sua suddivisione	
funzionale. Analisi dinamica di un bus. Architettura	
generale di una CPU: piedinatura e descrizione dei segnali	
di controllo. Temporizzazione del cicli istruzione	
principali. Caratteristiche dei registri interni e studio del set	
istruzioni. Gestione dello stack. Codifica delle istruzioni e	
modalità di indirizzamento.	
Introduzione alle memorie: memore non volatili (ROM,	6
PROM, EPROM, EEPROM, FLASH). Principio di	
funzionamento, caratteristiche e prestazioni. Memorie	
dinamiche. Funzionamento e temporizzazione dei cicli di	
lettura, scrittura e refresh. Determinazione della granularità	
di decodifica della memoria. Tecniche di decodifica della	
memoria.	
Dispositivi di I/O: Definizione dei tipi di I/O isolati e	4
mappati in memoria. Introduzione alle tecniche di	
comunicazione con handshake. Gestione delle periferiche	
con la tecnica delle interruzioni: gestione a polling e	
vettorizzata.	
I microcontrollori e le loro caratteristiche generali in	4
rapporto ai microprocessori. Presentazione e caratteristiche	
di microcontrollori a 8 bit per applicazioni embedded.	
Schema a blocchi, organizzazione della memoria e dei	
registri; set istruzioni. Comparazione fra microprocessori	
ad architettura CISC e RISC.	
Totale	30/24

Testi di riferimento:

- Appunti e note forniti durante il corso e sul sito web del docente.
- G.Baccolini C.Offelli: Microelaboratori, note di hardware. Città Studi Edizioni.
- M.M.Mano, C.R. Kime: Logic and computer design fundamentals. Prentice Hall ed.