FACOLTÀ	Scienze MM.FF.NN.
ANNO ACCADEMICO	2012/2013
CORSO DI LAUREA MAGISTRALE	Fisica
INSEGNAMENTO	Astrofisica
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Astrofisico, geofisico e spaziale
CODICE INSEGNAMENTO	01500
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	-
SETTORI SCIENTIFICO DISCIPLINARI	FIS/05
DOCENTE RESPONSABILE	Fabio Reale
(MODULO 1)	Professore Associato
	Università di Palermo
CFU	6
NUMERO DI ORE RISERVATE ALLO	98
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	52
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Nessuna
ANNO DI CORSO	Primo
SEDE DI SVOLGIMENTO DELLE	Aula, Dipartimento di Fisica, sede Piazza
LEZIONI	Parlamento 1
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, esercitazioni in aula
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Orale.
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	II semestre
CALENDARIO DELLE ATTIVITÀ	Secondo calendario approvato dal CISF
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Mar. 17-18, Gio. 17-18
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Competenze di base, incluse impostazioni matematiche, su fisica delle atmosfere stellari, del plasma e della radiazione otticamente sottile

Capacità di applicare conoscenza e comprensione

Le competenze sono preparatorie ad approfondimenti di ricerca in campo astrofisico.

Autonomia di giudizio

Valutazione autonoma di uno spettro stellare e delle sue componenti, impostazione di problemi riguardo la Fisica del plasma

Abilità comunicative

Acquisizione di linguaggio astrofisico attraverso interazione diretta e presentazione seminariale da parte dello studente in sede di esame

Capacità d'apprendimento

Capacita` e strumenti per intraprendere percorsi di ricerca e approfondimento nell'ambito di molte problematiche astrofisiche

OBIETTIVI FORMATIVI DEL MODULO

Il corso si propone di fornire allo studente competenze riguardo argomenti di Astrofisica adeguati al livello della Laurea Specialistica in Fisica.

MODULO	ASTROFISICA
ORE FRONTALI	LEZIONI FRONTALI
20	Fisica delle atmosfere stellari: stime di temperatura delle stelle, trasferimento
	ed equilibrio radiativo, la funzione sorgente, atmosfera grigia, il coefficiente
	di assorbimento, teoria della formazione delle righe spettrali, le righe
	dell'idrogeno, la curva di crescita
10	Fisica del plasma: generalita`, plasmi come fluidi, idrodinamica, fronti d'urto,
	moti e oscillazioni a singola particella, onde nei plasmi, cenni di fisica del
	plasma coronale
10	Spettroscopia di plasmi otticamente sottili: emissione continua e da righe,
	equilibrio di ionizzazione, modelli di emissivita`, assorbimento, cenni su
	rivelatori, tecniche di analisi e diagnostica, deviazioni dall'approssimazione
	coronale
	ESERCITAZIONI
6	Esercitazioni su Fisica delle atmosfere stellari
3	Esercitazioni su Fisica del plasma
3	Esercitazioni su Spettroscopia di plasmi otticamente sottili
TESTI CONSIGLIATI	- E. Boehm-Vitense, Introduction to Stellar Astrophysics: Vol.2, Stellar Atmospheres, Cambridge: Cambridge University Press
	- A. R. Choudhuri, The Physics of Fluids and Plasmas – An introduction for Physicists, Cambridge: Cambridge University Press
	- L. Golub, J. M. Pasachoff, The solar corona, Cambridge : Cambridge University Press
	- J. van Paradijs & A.M. Bleeker eds., X-ray Spectroscopy in Astrophysics, Berlin: Springer-Verlag