FACOLTÀ	SCIENZE MM FF NN		
ANNO ACCADEMICO	2009/10		
CORSO DI LAUREA SPECIALISTICA	ANALISI E GESTIONE AMBIENTALI		
INSEGNAMENTO	CHIMICA FISICA 2 CON ESERCITAZIONI		
TIPO DI ATTIVITÀ	Caratterizzanti		
AMBITO DISCIPLINARE	Discipline Chimiche		
CODICE INSEGNAMENTO	01876		
ARTICOLAZIONE IN MODULI	NO		
SETTORI SCIENTIFICO DISCIPLINARI	CHIM/02		
DOCENTE RESPONSABILE	STEFANA MILIOTO PROFESSORE ORDINARIO UNIVERSITA' DI PALERMO		
CFU	5 (3+2)		
NUMERO DI ORE RISERVATE ALLO STUDIO PERSONALE	71		
NUMERO DI ORE RISERVATE ALLE ATTIVITÀ DIDATTICHE ASSISTITE	54		
PROPEDEUTICITÀ	Nessuna		
ANNO DI CORSO	Primo		
SEDE DI SVOLGIMENTO DELLE LEZIONI	Aula E, Via Archirafi 20, Palermo		
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali Esercitazioni in laboratorio		
MODALITÀ DI FREQUENZA	Obbligatoria		
METODI DI VALUTAZIONE	Prova Orale		
TIPO DI VALUTAZIONE	Voto in trentesimi		
PERIODO DELLE LEZIONI	Terzo periodo		
CALENDARIO DELLE ATTIVITÀ DIDATTICHE	Lunedì e martedì ore 16.00-18.00 (lezioni frontali) Mercoledi e Venerdì ore 9.00-13.00 (esercitazioni di laboratorio)		
ORARIO DI RICEVIMENTO DEGLI STUDENTI	Da programmare		

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Lo studente deve conoscere i concetti fondamentali della chimica fisica applicata alla problematica del risanamento di suoli e bacini acquiferi contaminati da fasi liquide non acquose. A tale fine, deve conoscere il comportamento alle interfasi (liquido/aria, liquido/liquido e liquido/solido), quello reologico e la termodinamica delle soluzioni flushing adoperate nelle tecnologie di remediation trattate. Attraverso tali conoscenze potrà migliorare le sue conoscenze sul metodo scientifico di indagine e sarà capace di comprendere le problematiche ambientali in cui lo studente potrebbe essere coinvolto.

Capacità di applicare conoscenza e comprensione

Lo studente deve conoscere i concetti, le tecniche e metodologie chimico-fisiche per descrivere e comprendere a livello molecolare il processo di contaminazione di matrici solide e liquide e proporre soluzioni al problema.

Autonomia di giudizio

Lo studente deve possedere abilità nell'interpretare e valutare i dati relativi alle tematiche di inquinamento ambientale studiate esprimendo capacità autonoma di giudizio nel valutare il problema.

Abilità comunicative

Lo studente deve saper descrivere in termini chiari e rigorosi gli argomenti acquisiti durante il corso nell'ambito delle attività e dei rapporti professionali. La verifica del raggiungimento di dette capacità avviene attraverso la prova orale di esame in cui è anche valutata l'abilità, la correttezza e il rigore nell'esposizione.

Capacità d'apprendimento

Lo studente deve essere capace di aggiornare e adattare autonomamente a livello di conoscenz
superiori i concetti chimico-fisici acquisiti nel corso.

OBIETTIVI FORMATIVI DEL CORSO

L'obiettivo del corso è quello di fornire concetti di chimica fisica che sono alla base della comprensione delle problematiche di inquinamento dell'ambiente con particolare riferimento alla contaminazione del suolo e di bacini acquiferi da parte di sostanze organiche.

ORE FRONTALI	LEZIONI FRONTALI				
1	Introduzione al corso				
4	Tecnologie di remediation: Surfactant Enhanced aquifer Remediation e Complex Sugar Flushing				
4	Viscosità. Equazione di Poiseuille. Metodi sperimentali.				
6	Definizione termodinamica della tensione superficiale. Isoterma di adsorbimento. Equazione di La Place.				
4	Termodinamica di micellizzazione e di solubilizzazione in micelle.				
5	Interfase solido/liquido. Bagnabilità e angolo di contatto.				
ORE DI	ESERCITAZIONI				
ESERCITAZIONI					
9	Determinazione della costante di ripartizione di un contaminante tra la fase acquosa e la fase aggregata di un tensioattivo a 25 °C mediante il metodo spettrofluorimetrico.				
	acquosa e la fase aggregata di un tensioattivo a 25 °C mediante il metodo				
9	acquosa e la fase aggregata di un tensioattivo a 25 °C mediante il metodo spettrofluorimetrico. Determinazione del coefficiente di viscosità di soluzioni acquose di polimeri in				

TESTI CONSIGLIATI	Principles of Colloid and Surface Chemistry, P. C. Hiemenz, Marcel Dekker, 1978. Surfactants and Interfacial Phenomena, M. J. Rosen Ed., Wiley-Interscience, 1978.				
001,02022121					
	C. Jolicoeur, Thermodynamic flow methods in biochemistry: calorimetry,				
	densimetry and dilatometry.				