FACOLTÀ	Ingegneria
ANNO ACCADEMICO	2013-14
CORSO DI LAUREA	Ingegneria Meccanica
INSEGNAMENTO	Fondamenti di meccanica applicata
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Ingegneria Meccanica
CODICE INSEGNAMENTO	03490
ARTICOLAZIONE IN MODULI	NO
SETTORI SCIENTIFICO DISCIPLINARI	ING-IND/13
DOCENTE RESPONSABILE	Marco Cammalleri
	Ricercatore
CFU	6
NUMERO DI ORE RISERVATE ALLO	90
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	60
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Suggerite: "Calcolo I", "Calcolo II", "Fisica I"
	e "Disegno assistito da calcolatore"
ANNO DI CORSO	2°
SEDE DI SVOLGIMENTO DELLE	Consultare il sito www.ingegneria.unipa.it
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in aula
MODALITÀ DI FREQUENZA	4 ore di lezione e 3 ore di esercitazioni
	settimanali
METODI DI VALUTAZIONE	Prova orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Consultare il sito www.ingegneria.unipa.it
CALENDARIO DELLE ATTIVITÀ	Consultare il sito www.ingegneria.unipa.it
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Lunedì, Mercoledì e Venerdì ore 12-13
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

• Lo studente, al termine del corso, avrà acquisito conoscenze e metodologie adeguate per affrontare e risolvere i problemi classici della meccanica dei sistemi.

Capacità di applicare conoscenza e comprensione

• Lo studente avrà acquisito conoscenze e metodologie per analizzare e risolvere in modo corretto i casi più semplici dei problemi tipici della meccanica applicata.

Autonomia di giudizio

• Lo studente sarà in grado di individuare il modo corretto di affrontare la risoluzione di un problema di cinematica e/o dinamica nel campo delle macchine e dei meccanismi piani.

Abilità comunicative

• Lo studente avrà acquisito conoscenze e metodologie per essere in grado di analizzare, risolvere e descrivere in modo critico e corretto i problemi classici della meccanica delle

macchine.

Capacità d'apprendimento

• Lo studente avrà appreso le leggi fondamentali della meccanica e la loro traduzione in fatti operativi per la risoluzione dei problemi della meccanica applicata, essendo quindi in grado di affrontare con sufficiente autonomia e discernimento i successivi studi ingegneristici.

OBIETTIVI FORMATIVI

Il Corso si propone di mettere lo studente in grado di padroneggiare soluzioni e metodi risolutivi di problemi di cinematica applicata e di equilibrio di sistemi semplici, ritrovando in termini applicativi e puntuali le leggi fondamentali della meccanica.

ODE EDONITALI	LEZIONI EDONULI I
ORE FRONTALI	LEZIONI FRONTALI
2	Vettori – Composizione, scomposizione e prodotti di vettori, asse centrale,
	centro, sistemi equilibrati, campi vettoriali.
4	Nozioni fondamentali di cinematica – Cinematica del punto, moti centrali.
	Moti rigidi piani, sferici ed elicoidali. Moti relativi. Sistemi vincolati.
6	Meccanismi piani - Contatti, catene cinematiche, meccanismi, velocità ed
	accelerazioni, polari e profili coniugati, moti composti, meccanismi articolati,
4	Meccanismi con coppie superiori - Problemi di analisi dei meccanismi piani
	con coppie superiori
6	Ruote dentate – Genesi dei profili e trasmissione del moto
7	Principi della meccanica ed applicazioni - Leggi di Newton, lavoro,
/	
2	potenza, potenziale. Principio dei lavori virtuali. Applicazioni.
2	Statica – Le leggi e l'analisi dell'equilibrio dei meccanismi piani.
	Determinazione delle reazioni vincolari.
6	Geometria e cinematica delle masse - Baricentri, momenti e tensore
	d'inerzia, giroscopi. Quantità di moto, momento della quantità di moto,
	energia cinetica.
3	Trasmissione della potenza meccanica – Perdite e rendimento. Applicazioni
Tot. 40	
	ESERCITAZIONI
Tot. 20	Utilizzo del metodo grafico-analitico per la ricerca e l'analisi numerica dei
	problemi proposti, relativi ai diversi argomenti trattati.
TESTI	1) R. Monastero, "Appunti per il Corso di Elementi di meccanica teorica ed
CONSIGLIATI	applicata",
	,
	2) R. Monastero, "Appunti per il Corso di Meccanica applicata alle macchine",
	(reperibili in rete all'indirizzo: http://www.dima.unipa.it/)
	(cepetion in test an indirection interpretation)
	3) C. Ferrari, A. Romiti, "Meccanica Applicata alle Macchine", UTET,
	Torino.
	10mo.