FACOLTÀ	Ingegneria
ANNO ACCADEMICO	2014/2015
CORSO DI LAUREA	Ingegneria Meccanica - Indirizzo Aeronautico
INSEGNAMENTO	Aerodinamica
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Ingegneria aerospaziale
CODICE INSEGNAMENTO	01129
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	
SETTORI SCIENTIFICO DISCIPLINARI	ING-IND/06
DOCENTE RESPONSABILE	Rosario M. Marretta
	P.A.
	Università di Palermo
CFU	9
NUMERO DI ORE RISERVATE ALLO	135
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	90
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Analisi Matematica, Fisica 1, Fisica Tecnica
ANNO DI CORSO	2
SEDE DI SVOLGIMENTO DELLE	Consultare il sito www.ingegneria.unipa.it
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in aula
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Secondo semestre
CALENDARIO DELLE ATTIVITÀ	Consultare il sito www.ingegneria.unipa.it
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Lun-Ven 10-11
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Acquisizione dei concetti della meccanica del continuo in campi aerodinamici. Teorie generali della diffusione e produzione di strato limite. Teoria della vorticità. Teoria dei profili alari e delle forze aerodinamiche. Campi di flusso tridimensionali. Polari del velivolo. Cenni di aeroelasticità.

Capacità di applicare conoscenza e comprensione

Capacità di riconoscere, organizzare e applicare i contenuti della disciplina ai concetti di avamprogetto aerodinamico degli elementi principali un velivolo completo

Autonomia di giudizio

Essere in grado di valutare le variabili esterne e le specifiche di progetto per adeguarle alla fase di post-design di un corpo aerodinamico complesso

Abilità comunicative

Capacità di confrontare il proprio bagaglio cognitivo nel contesto sia della ricerca scientifica che nelle applicazioni industriali aerospaziali nonché in quelle nelle quali le tematiche aeronautiche

vengono ampiamente e basicamente applicate

Capacità d'apprendimento

Capacità di critica e di discernimento della letteratura di riferimento. Capacità intellettuale di applicare le metodologie acquisite e tipiche della fluidodinamica a settori di ricerca e/o applicativi di livello superiore

OBIETTIVI FORMATIVI

Gli obiettivi della seconda parte saranno quelli di approfondire e correlare gli aspetti matematicofisici della fluidodinamica considerando le azioni esercitate da flussi subsonori su corpi aerodinamici sia in campo di moto 2D e 3D. Verranno forniti i metodi numerici di base per il calcolo aerodinamico di base per gli elementi principali di un velivolo completo. Attraverso la modellazione della nascita e diffusione della vorticità e del suo trasporto si forniranno le nozioni basilari e le applicazioni di progetto per il calcolo della portanza e della resistenza dei profili alari.

ORE FRONTALI	LEZIONI FRONTALI
1	Obiettivi della disciplina e delle basi teoriche
2	Criteri e basi fisico-matematica della meccanica del continuo per gli aeriformi
1	Paradosso di D'Alembert e calcolo potenziale di flussi bidimensionali
4	Strati limite incompressibili – aspetti fisici
5	Nascita, evoluzione e diffusione del meccanismo della vorticità su corpi
	immersi in corrente fluida
2	Approcci matematici dello strato limite
4	Scomposizione della forza aerodinamica, modelli di Prandtl e di Barman per
	corpi aerodinamici tridimensionali
3	Caratteristiche dei profili alari: centro aerodinamico, centro di pressione,
	fuoco, assetti, incidenze e correlazione con la forza aerodinamica
2	Seminario sui metodi BEM applicati a flussi potenziali
4	Tubi di flusso e di corrente, soluzioni singolari di campi aerodinamici,
	sorgenti, pozzi, doppiette e vortici
2	Modelli applicativi di codici e algoritmi di calcolo alternativi
	ESERCITAZIONI
10	Calcolo delle performance di un corpo aerodinamico in presenza di scia;
	Calcolo delle resistenze di profili di corpi aerodinamici; applicazioni di
	moduli di calcolo ai volumi finiti
TESTI	Katz-Plotkin: Low Speed Aerodynamics, McGraw Hill; Anderson:
CONSIGLIATI	Fundamentals of Aerodynamics, McGraw Hill; Buresti: Dispense di
	Fluidodinamica (fornite dal docente)

OBIETTIVI FORMATIVI

Gli obiettivi della seconda parte saranno quelli di illustrare gli aspetti dei flussi supersonori e i metodi matematici di approccio nonché l'aspetto fisico della nascita ed evoluzione delle onde d'urto normali e oblique su corpi aerodinamici. Si forniranno le implicazioni di tale flusso nella forma in pianta dei velivoli e delle superfici alari e dei parametri fondamentali di progetto (ali a freccia positiva e negativa, ali a delta e corpi fortemente allungati). Altro obiettivo sarà quello di approfondire l'aerodinamiche di ali rotanti e delle teorie fisico-matematiche per lo studio delle prestazioni di un'elica (trazione, coppia, rendimento e fasi di funzionamento). Il modulo, inoltre, ha come obiettivo quello di illustrare, seppure in maniera accennata, i principi e le leggi

dell'aeroacustica di flussi viscosi e turbolenti subsonori e supersonori pervenendo alla dimostrazione della legge dell'ottava potenza di Lighthill e delle implicazioni matematiche per la sua soluzione. Infine, il modulo si propone di fornire agli allievi gli aspetti propedeutici di base per il progetto di corpi aerodinamici e tozzi intesi come corpi elastici approfondendo gli aspetti concernenti il galloping e il vortex shedding.

ORE FRONTALI	LEZIONI FRONTALI
4	Flussi supersonici: onde d'urto normali, legami pressione-velocità,
	implicazioni termodinamiche;
4	Parametri geometrico-costruttivi di corpi in regime supersonico: ali a freccia,
	a delta. Correlazione tra incidenza, freccia e numeri di Mach e di Reynolds
3	Strati limite compressibili (cenni)
1	Vortex breakdown in funzione del dimensionamento di un'ala a delta (cenni)
12	Teoria delle ali rotanti. Teoria impulsiva semplice e generale per l'elica.
	Parametri geometrici e di progetto ed interazione di questi con le performance
	in termini di trazione, potenza e rendimento. Fasi e campi di applicazione
	dell'elica aeronautica. Diagrammi caratteristici e di progetto di un propulsore
	ad elica
3	Aeroacustica (cenni): leggi e metodi, analogia aerodinamica, sorgente
	acustica, dipolo e quadripolo. Metodi di approccio matematico per la
	soluzione della equazione d'onda. Legge di Lighthill e soluzioni di Ffowcs
	Williams & Hawkings
3	Aeroelasticità (cenni): diagramma di Collar, operatori aeroelastici, divergenza
	torsionale, problemi di risposta e stabilità aeroelastica statica e dinamica.
	Corpi tozzi. Numero di Strohual ecorrelazione con il numero di Reynolds.
	Galloping e Vortex shedding.
	ESERCITAZIONI
20	Calcolo della geometria palare di un elica aeronautica subsonica poco
	caricata; dimensionamento di un cockpit aeronautico in volo compressibile e
	in presenza di strato limite comprimibile e termico
TESTI	Katz-Plotkin: Low Speed Aerodynamics, McGraw Hill; Anderson:
CONSIGLIATI	Fundamentals of Aerodynamics, McGraw Hill; Buresti: Dispense di
	Fluidodinamica (fornite dal docente)