SCUOLA	Scienze di Base ed Applicate
ANNO ACCADEMICO	2015/2016
CORSO DI LAUREA TRIENNALE DM	L34 Scienze Geologiche
270	
INSEGNAMENTO	Fisica Terrestre
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Ambito geofisico
CODICE INSEGNAMENTO	03334
ARTICOLAZIONE IN MODULI	NO
SETTORI SCIENTIFICO	GEO10
DISCIPLINARI	
DOCENTE RESPONSABILE	Dario Luzio, Professore Ordinario
(MODULO 1)	Università di Palermo
CFU	5+1
NUMERO DI ORE RISERVATE ALLO	94
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	56
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Nessuna (fortemente consigliate Fisica, Matematica)
ANNO DI CORSO	Secondo
SEDE DI SVOLGIMENTO DELLE	http://portale.unipa.it/facolta/sc.mat.fis.natur./cds
LEZIONI	/scienzegeologiche2126/home-corso/
ORGANIZZAZIONE DELLA	Lezioni frontali, Esercitazioni in aula,
DIDATTICA	
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Primo semestre
CALENDARIO DELLE ATTIVITÀ	http://portale.unipa.it/facolta/sc.mat.fis.natur./cds/scienzegeolo
DIDATTICHE	giche2126/calendari/
ORARIO DI RICEVIMENTO DEGLI	Lunedì, Venerdì
STUDENTI	Ore 11-13

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

- conoscenze di base, di tipo teorico, sperimentale e pratico, fondamentali nelle discipline geofisiche;
- sufficiente familiarità con il metodo scientifico d'indagine;
- capacità di utilizzare gli strumenti matematici e sperimentali per l'analisi di processi geologici da un punto di vista fisico;

Capacità di applicare conoscenza e comprensione

Gli studenti del corso saranno in possesso di conoscenze idonee a svolgere attività lavorativa in diversi ambiti delle Scienze della Terra applicati al Territorio con metodi geofisici;

Tali professionalità potranno trovare applicazione in Enti Pubblici, istituzioni, aziende, società, studi professionali.

Autonomia di giudizio

Gli studenti del corso acquisiranno competenze adeguate per la progettazione di campagne d'indagine geofisica e formulazione di modelli interpretativi dei risultati ottenuti.

Abilità comunicative

Gli studenti del corso acquisiranno capacità di lavorare in gruppo e di inserirsi prontamente negli ambienti di lavoro.

Capacità d'apprendimento

Le conoscenze acquisite e la capacità di apprendimento sviluppata risulteranno utili per affrontare il corso di Geofisica Applicata dello stesso Corso di Laurea e corsi di livello superiore (Lauree Magistrali, Master, Dottorati di Ricerca). La formazione acquisita permetterà anche di incrementare le proprie conoscenze con aggiornamenti autonomi.

I **risultati di apprendimento attesi** vengono sviluppati durante tutto il percorso formativo attraverso lezioni frontali, esercitazioni e attività di laboratorio. Il livello ed il grado di apprendimento saranno valutati mediante esame di profitto.

OBIETTIVI FORMATIVI DEL CORSO

L'obiettivo principale del corso di Fisica Terrestre è mostrare come i campi statici o dipendenti dal tempo di alcune grandezze fisiche misurabili sulla superficie terrestre o in prossimità di questa siano dipendenti dalla distribuzione spazio-temporale di parametri sorgente di tipo meccanico, elettromagnetico o termodinamico, idonei a descrivere sia la costituzione dell'interno della Terra, anche da un punto di vista mineralogico e petrografico, sia alcuni importanti processi evolutivi, che hanno luogo nell'interno della Terra, come la geodinamica, la dinamo magnetoidrodinamica e la sismogenesi.

Si affronta anche il problema inverso della costruzione di modelli matematici delle sorgenti di un campo, dallo studio sperimentale del suo andamento spazio-temporale.

CORSO	FISICA TERRESTRE	
ORE FRONTALI	LEZIONI FRONTALI	
1	Analisi della classe e descrizione del corso	
6	Richiami e complementi di nozioni di Fisica e di Matematica	
3	Origine ed evoluzione del Sistema Solare	
6	Precessione degli equinozi, precessione libera, marea, attrito di marea	
6	Modello matematico del campo di gravità terrestre ed elementi di Geodesia Fisica	
3	Andamento spaziale e temporale del campo magnetico terrestre e cenni di Paleomagnetismo	
2	La dinamo magnetoidrodinamica	
7	Teoria dell'elasticità e onde elastiche	
2	Modelli dell'interno della Terra	
4	Elementi di Sismologia	
	ESERCITAZIONI	
8	Esercitazioni numeriche in aula	
8	Simulazioni di analisi di dati in laboratorio informatico	
TESTI	Dispense del corso	
CONSIGLIATI	Gasparini, Mantovani – Fisica della Terra solida	
	Fowler –The solid Earth	
	Steacy – Physics of the Earth	
	Bottt – The interior of the Earth	
	Lay, Wallace – Modern global seismology	
	Zarkov – Struttura interna dei pianeti	