STRUTTURA	Scuola Politecnica - DEIM
ANNO ACCADEMICO	2015/2016
CORSO DI LAUREA	Ingegneria Elettrica - Polo di Caltanissetta
INSEGNAMENTO	Elettronica di Potenza
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Ingegneria Elettrica
CODICE INSEGNAMENTO	02957
ARTICOLAZIONE IN MODULI	No
NUMERO MODULI	
SETTORI SCIENTIFICO DISCIPLINARI	ING-IND/32
DOCENTE RESPONSABILE	Rosario Miceli
	Prof. Associato
	Università degli Studi di Palermo
CFU	9
NUMERO DI ORE RISERVATE ALLO STUDIO	153
PERSONALE	
NUMERO DI ORE RISERVATE ALLE	72
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Matematica I e II, Fisica, Principi di Ingegneria
	elettrica, Capacità di impiego del PC, conoscenza
	della lingua inglese
ANNO DI CORSO	II
SEDE DI SVOLGIMENTO DELLE LEZIONI	Consultare il sito politecnica.unipa.it
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in aula, Esercitazioni
	in laboratorio
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Orale, Presentazione delle esercitazioni svolte
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Consultare il sito politecnica.unipa.it
CALENDARIO DELLE ATTIVITÀ	Consultare il sito politecnica.unipa.it
DIDATTICHE	-
ORARIO DI RICEVIMENTO DEGLI	Dopo la lezione e per appuntamento
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Lo studente al termine del corso avrà conoscenze riguardanti i diversi componenti elettronici di potenza, le principali tecniche di analisi dei circuiti elettronici di potenza e dei convertitori di potenza impiegati nei sistemi elettrici di potenza e negli azionamenti elettrici. Egli sarà in grado di comprendere le problematiche relative alla progettazione, sviluppo e messa a punto dei circuiti elettronici di potenza e dei convertitori di potenza.

Capacità di applicare conoscenza e comprensione

Lo studente avrà conoscenze e capacità di comprensione adeguate per scegliere ed assemblare i diversi componenti di circuiti elettronici di potenza e di convertitori di potenza e per analizzare e risolvere problemi tipici della relativa progettazione, sviluppo e messa a punto. Inoltre egli sarà in grado di simulare al calcolatore strategie di controllo per convertitori di potenza.

Autonomia di giudizio

Grazie all'acquisizione di metodologie di analisi proprie dello sviluppo e messa a punto di circuiti elettronici di potenza e di sistemi più complessi, quali i convertitori elettronici di potenza, lo studente sarà in grado di interpretare correttamente e autonomamente i problemi posti dagli utilizzatori di tali dispositivi. In

particolare egli saprà esprimere giudizi sul corretto funzionamento e impiego dei convertitori elettronici di potenza e saprà collezionare le specifiche necessarie per la scelta del convertitore più adeguato, sia dal punto di vista tecnico che economico, alle esigenze del committente.

Abilità comunicative

Lo studente acquisirà la capacità di comunicare ed esprimere problematiche inerenti l'oggetto del corso. Inoltre egli sarà in grado di sostenere conversazioni su tematiche riguardanti i circuiti elettronici di potenza e i convertitori elettronici di potenza, di evidenziare i problemi relativi alla loro scelta e corretto impiego e di offrire soluzioni.

Capacità d'apprendimento

Lo studente avrà acquisito capacità di apprendere, anche in modo autonomo, ulteriori conoscenze sui circuiti elettronici di potenza e sui convertitori di potenza. Tali capacità di apprendimento gli consentiranno di proseguire gli studi ingegneristici con maggiore autonomia e discernimento.

OBIETTIVI FORMATIVI

Il corso ha carattere sia teorico che applicativo ed affronta lo studio dei componenti fondamentali dell'elettronica di potenza, delle definizioni dei parametri e delle grandezze elettriche di più frequente utilizzo e dei convertitori elettronici di potenza *AC/DC*, privilegiando in modo particolare le problematiche di questi ultimi connesse con il loro funzionamento. In particolare per i diversi convertitori vengono analizzate le strutture circuitali e le tecniche di controllo impiegate.

Gli obiettivi formativi consistono nel fornire agli allievi capacità adeguate per:

- conoscere i componenti elettronici di potenza fondamentali (diodi, transistor, ecc.);
- quantificare il grado di distorsione delle forme d'onda dei convertitori;
- comprendere i problemi tipici della progettazione, sviluppo e messa a punto di convertitori elettronici di potenza *AC/DC*;
- scegliere ed assemblare i diversi componenti dei convertitori elettronici di potenza AC/DC;
- collaudare e gestire i convertitori elettronici di potenza *AC/DC* attualmente impiegati nei sistemi elettrici di potenza e negli azionamenti elettrici;
- Esercitazioni numeriche sui convertitori elettronici di potenza AC/DC, DC/DC e DC/AC.

CONVERTITORI DC/DC, DC/AC e AC/AC (3 CFU)

Il corso ha carattere essenzialmente applicativo ed affronta lo studio dei convertitori elettronici di potenza **DC/DC**, **DC/AC** e **AC/AC**, privilegiando in modo particolare le problematiche connesse con il loro funzionamento. In particolare per i diversi convertitori vengono analizzate le strutture circuitali e le tecniche di controllo impiegate.

Gli obiettivi formativi consistono nel fornire agli allievi capacità adeguate per:

- comprendere i problemi tipici della progettazione, sviluppo e messa a punto di convertitori elettronici di potenza *DC/DC*, *DC/AC e AC/AC*;
- scegliere ed assemblare i diversi componenti dei convertitori elettronici di potenza DC/DC, DC/AC e AC/AC;

collaudare e gestire i convertitori elettronici di potenza *DC/DC*, *DC/AC e AC/AC* attualmente impiegati nei sistemi elettrici di potenza e negli azionamenti elettrici.

ORE FRONTALI	LEZIONI FRONTALI
4	Componenti elettronici utilizzati nei convertitori statici di potenza
5	Componenti passivi utilizzati nei convertitori statici di potenza (induttori, condensatori e
	trasformatori)
5	Serie di Fourier, THD, potenze attive, reattiva ed apparente in regime distorto.
8	Convertitori AC/DC non controllati.
10	Convertitori AC/DC controllati.
3	Cenni sull'applicazione dei convertitori AC/DC negli impianti e negli azionamenti elettrici
6	Convertitori DC/DC con trasformatori di isolamento ad alta frequenza.
9	Analisi del comportamento dei convertitori elettronici di potenza c.c./c.c e relative tecniche di controllo.
10	Analisi del comportamento dei convertitori elettronici di potenza c.c./a.c. e relative tecniche di controllo.
2	Analisi del comportamento dei convertitori elettronici di potenza c.a./c.a e relative tecniche di controllo.

10	ESERCITAZIONI Esercitazioni numeriche sui convertitori elettronici di potenza AC/DC, DC/DC e DC/AC.
TESTI CONSIGLIATI	 N. Mohan, T. M. Undeland, W. P. Robbins, "Power Electronics: Converters, Applications, and Design". Second edition, John Wiley & Sons, Inc., New York, 1995 (consigliato rispetto alla versione italiana). N. Mohan, T. M. Undeland, W. P. Robbins: "Elettronica di Potenza: Convertitori e Applicationi", HOEPLI, Milano, 2005 (versione tradotta in lingua italiana). Fotocopie dei trasparenti utilizzati. N. Mohan, T. Undeland, W. P. Robbins: "Elettronica di Potenza: Convertitori e Applicationi", HOEPLI, Milano, 2005. H. Bühler: Electronique de reglage et de puissance, Ed. Georgi, 1979.